Advertisement

Archives of Microbiology

, Volume 159, Issue 6, pp 545–553 | Cite as

Analysis of a pleiotropic gene region involved in formation of catalytically active hydrogenases in Alcaligenes eutrophus H16

  • Jens Dernedde
  • Marita Eitinger
  • Bärbel Friedrich
Original Papers

Abstract

In Alcaligenes eutrophus H16 a pleiotropic DNA-region is involved in formation of catalytically active hydrogenases. This region lies within the hydrogenase gene cluster of megaplasmid pHG1. Nucleotide sequence determination revealed five open reading frames with significant amino acid homology to the products of the hyp operon of Escherichia coli and other hydrogenase-related gene products of diverse organisms. Mutants of A. eutrophus H16 carrying Tn5 insertions in two genes (hypB and hypD) lacked catalytic activity of both soluble (SH) and membrane-bound (MBH) hydrogenase. Immunological analysis showed that the mutants contained SH-and MBH-specific antigen. Growing the cells in the presence of 63Ni2+ yielded significantly lower nickel accumulation rates of the mutant strains compared to the wild-type. Analysis of partially purified SH showed only traces of nickel in the mutant protein suggesting that the gene products of the pleiotropic region are involved in the supply and/or incorporation of nickel into the two hydrogenases of A. eutrophus.

Key words

A. eutrophus Hydrogenase processing genes Nickel incorporation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bourne HR, Sanders DA, McCormick R (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349: 117–127CrossRefGoogle Scholar
  2. Bruschi M, Guerlesquin F (1988) Structure, function and evolution of bacterial ferredoxins. FEMS Microbiol Rev 54: 155–176CrossRefGoogle Scholar
  3. Chen JC, Mortenson LE (1992) Identification of six open reading frames from a region of the Azotobacter vinelandii genome likely involved in dihydrogen metabolism. Biochim Biophys Acta 1131: 199–202CrossRefGoogle Scholar
  4. Colbeau A, Richaud P, Toussaint B, Caballero J, Elster C, Delphin C, Smith RL, Chabert J, Vignais PM (1993) Organization of the genes necessary for hydrogenase expression in Rhodobacter capsulatus. Sequence analysis. Identification of two hyp regulatory mutants. Mol Microbiol (in press)Google Scholar
  5. Cole ST (1987) Nucleotide sequence and comparative analysis of the frd operon encoding the fumarate reductase of Proteus vulgaris. Eur J Biochem 167: 481–488CrossRefGoogle Scholar
  6. Cussac V, Ferrero RL, Labigne A (1992) Expression of Helicobacter pylori urease genes in Escherichia coli grown under nitrogenlimiting conditions. J Bacteriol 174: 2466–2473CrossRefGoogle Scholar
  7. Du L, Stejskal F, Tibelius KH (1992) Characterization of two genes (hup D and hupE) required for hydrogenase activity in Azotobacter chroococcum. FEMS Microbiol Lett 96: 93–102CrossRefGoogle Scholar
  8. Eberz G, Friedrich B (1991) Three trans-acting regulatory functions control hydrogenase synthesis in Alcaligenes eutrophus. J Bacteriol 173: 1845–1854CrossRefGoogle Scholar
  9. Eisenberg D, Schwarz E, Komaromy M, Wall R (1984) Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol 179: 125–142CrossRefGoogle Scholar
  10. Eitinger T, Friedrich B (1991) Cloning, nucleotide sequence, and heterologous expression of a high-affinity nickel transport gene from Alcaligenes eutrophus. J Biol Chem 266: 3222–3227PubMedGoogle Scholar
  11. Friedrich CG, Friedrich B, Bowien B (1981) Formation of enzymes of autotrophic metabolism during heterotrophic growth of Alcaligenes eutrophus. J Gen Microbiol 122: 69–78Google Scholar
  12. Friedrich CG, Schneider K, Friedrich B (1982) Nickel in the catalytically active hydrogenase of Alcaligenes eutrophus. J Bacteriol 152: 42–48PubMedPubMedCentralGoogle Scholar
  13. Henikoff S (1984) Unidirectional digestion with exonuclease III creates targeted break points for DNA sequencing. Gene 28: 351–359CrossRefGoogle Scholar
  14. Hidalgo E, Palacios JM, Murillo J, Ruiz-Argüeso T (1992) Nucleotide sequence and characterization of four additional genes of the hydrogenase structural operon from Rhizobium leguminosarum bv. viciae. J Bacteriol 174: 4130–4139CrossRefGoogle Scholar
  15. Jacobi A, Rossmann R, Böck A (1992) The hyp operon gene products are required for the maturation of catalytically active hydrogenase isoenzymes in Escherichia coli. Arch Microbiol 158: 444–451CrossRefGoogle Scholar
  16. Jones BD, Mobley HLT (1989) Proteus mirabilis urease: nucleotide sequence determination and comparison with jack bean urease. J Bacteriol 171: 6414–6422CrossRefGoogle Scholar
  17. Kortlüke C, Friedrich B (1992) Maturation of membrane-bound hydrogenase of Alcaligenes eutrophus H16. J Bacteriol 174: 6290–6293CrossRefGoogle Scholar
  18. Kortlüke C, Hogrefe C, Eberz G, Pühler A, Friedrich B (1987) Genes of lithoautotrophic metabolism are clustered on the megaplasmid pHG1 in Alcaligenes eutrophus. Mol Gen Genet 210: 122–128CrossRefGoogle Scholar
  19. Kortlüke C, Horstmann K, Schwartz E, Rohde M, Binsack R, Friedrich B (1992) A gene complex coding for the membranebound hydrogenase of Alcaligenes eutrophus H16. J Bacteriol 174: 6277–6289CrossRefGoogle Scholar
  20. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157: 105–132CrossRefGoogle Scholar
  21. Lee MH, Mulrooney SB, Renner MJ, Markowicz Y, Hausinger RP (1992) Klebsiella aerogenes urease gene cluster: sequence of ure D and demonstration that four accessory genes (ureD, ureE, ureF, and ureG) are involved in nickel metallocenter biosynthesis. J Bacteriol 174: 4324–4330CrossRefGoogle Scholar
  22. Lutz S, Jacobi A, Schlensog V, Böhm R, Sawers G, Böck A (1991) Molecular characterization of an operon (hyp) necessary for the activity of the three hydrogenase isoenzymes in Escherichia coli. Mol Microbiol 5: 123–135CrossRefGoogle Scholar
  23. Maier T, Jacobi A, Sauter M, Lottspeich F, Böck A (1993) The product of the hypB gene which is required for nickel incorporation into hydrogenases in a novel G protein. J. Bacteriol 175: 630–635CrossRefGoogle Scholar
  24. Mulrooney SB, Hausinger RP (1990) Sequence of the Klebsiella aerogenes urease genes and evidence for accessory proteins facilitating nickel incorporation. J Bacteriol 172: 5837–5843CrossRefGoogle Scholar
  25. Normark S, Bergström S, Edlund T, Grundström G, Jaurin B, Lindberg FP, Olsson O (1983) Overlapping genes. Annu Rev Genet 17: 499–525CrossRefGoogle Scholar
  26. Przybyla AE, Robbins J, Menon N, Peck HD (1992) Structurefunction relationships among the nickel-containing hydrogenases. FEMS Microbiol Rev 88: 109–136CrossRefGoogle Scholar
  27. Rey L, Murillo J, Hernando Y, Hidalgo E, Cabrera E, Imperial J, Ruiz-Argüeso T (1993) Molecular analysis of a microaerobically induced operon required for hydrogenase synthesis in Rhizobium leguminosarum bv. viciae. Mol Microbiol (in press)Google Scholar
  28. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  29. Sanger F, Nicklen S, Coulsen AR (1977) DNA-sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467CrossRefGoogle Scholar
  30. Schlegel HG, Kaltwasser H, Gottschalk G (1961) Ein Submersverfahren zur Kultur wasserstoffoxidierender Bakterien: wachstumsphysiologische Untersuchungen. Arch Mikrobiol 38: 209–222CrossRefGoogle Scholar
  31. Schneider K, Schlegel HG (1976) Purification and properties of soluble hydrogenase from Alcaligenes eutrophus H16. Biochim Biophys Acta 452: 66–80CrossRefGoogle Scholar
  32. Tran-Betcke A, Warnecke U, Böcker C, Zaborosch C, Friedrich B (1990) Cloning and nucleotide sequences of the genes for the subunits of NAD-reducing hydrogenase of Alcaligenes eutrophus H16. J Bacteriol 172: 2920–2929CrossRefGoogle Scholar
  33. Tabor S, Richardson CC (1985) A bacteriophage T7 polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci USA 82: 1074–1078CrossRefGoogle Scholar
  34. Xu H-W, Wall JD (1991) Clustering of genes necessary for hydrogen oxidation in Rhodobacter capsulatus. J Bacteriol 173: 2401–2405CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Jens Dernedde
    • 1
  • Marita Eitinger
    • 1
  • Bärbel Friedrich
    • 1
  1. 1.Institut für Pflanzenphysiologie und Mikrobiologie der Freien Universität BerlinBerlin 33Germany

Personalised recommendations