Advertisement

Archives of Microbiology

, Volume 159, Issue 6, pp 530–536 | Cite as

Function of methylcobalamin: coenzyme M methyltransferase isoenzyme II in Methanosarcina barkeri

  • Alexei Yeliseev
  • Peter Gärtner
  • Ulrike Harms
  • Dietmar Linder
  • Rudolf K. Thauer
Original Papers

Abstract

Methanosarcina barkeri was recently shown to contain two cytoplasmic isoenzymes of methylcobalamin: coenzyme M methyltransferase (methyltransferase 2). Isoenzyme I predominated in methanol-grown cells and isoenzyme II in acetate-grown cells. It was therefore suggested that isoenzyme I functions in methanogenesis from methanol and isoenzyme II in methanogenesis from acetate. We report here that cells of M. barkeri grown on trimethylamine, H2/CO2, or acetate contain mainly isoenzyme II. These cells were found to have in common that they can catalyze the formation of methane from trimethylamine and H2, whereas only acetate-grown cells can mediate the formation of methane from acetate. Methanol-grown cells, which contained only low concentrations of isoenzyme II, were unable to mediate the formation of methane from both trimethylamine and acetate. These and other results suggest that isoenzyme II (i) is employed for methane formation from trimethylamine rather than from acetate, (ii) is constitutively expressed rather than trimethylamine-induced, and (iii) is repressed by methanol. The constitutive expression of isoenzyme II in acetate-grown M. barkeri can explain its presence in these cells. The N-terminal amino acid sequences of isoenzyme I and isoenzyme II were analyzed and found to be only 55% similar.

Key words

Archaea Methanogens Trimethylamine metabolism Methyltransferases Methyl coenzyme M Methylcobalamin Corrinoids Vitamin B12 

Abbreviations

H-S-CoM

coenzyme M or 2-mercaptoethane-sulfonate

CH3-S-CoM

methyl-coenzyme M or 2(methylthio)-ethanesulfonate

[Co]

cobalamin

CH3-[Co]

methylcobalamin

H4MPT

tetrahydromethanopterin

CH3-H4MPT

N5-methyltetrahydromethanopterin

MT1

methyltransferase 1 or methanol: 5-hydroxybenzimidazolyl cobamide methyltransferase

MT2

methyltransferase 2 or methylcobalamin: coenzyme M methyltransferase

Mops

morpholinopropanesulfonate

1 U =

1 μmol/min

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43: 260–296PubMedPubMedCentralGoogle Scholar
  2. Becher B, Müller V, Gottschalk G (1992) The methyltetrahydromethanopterin: coenzyme M methyltransferase of Methanosarcina strain Göl is a primary sodium pump. FEMS Microbiol Lett 91: 239–244Google Scholar
  3. Bott M, Thauer RK (1987) Proton-motive-force-driven formation of CO from CO2 and H2 in methanogenic bacteria. Eur J Biochem 168: 407–412CrossRefGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254CrossRefGoogle Scholar
  5. DiMarco AA, Bobik TA, Wolfe RS (1990) Unusual coenzymes of methanogenesis. Annu Rev Biochem 59: 355–394CrossRefGoogle Scholar
  6. Ferry JG (1992) Methane from acetate. J Bacteriol 174: 5489–5495CrossRefGoogle Scholar
  7. Fischer R, Thauer RK (1989) Methyltetrahydromethanopterin as an intermediate in methanogenesis from acetate in Methanosarcina barkeri. Arch Microbiol 151: 459–465CrossRefGoogle Scholar
  8. Fischer R, Gärtner P, Yeliseev A, Thauer RK (1992) N 5-Methyltetrahydromethanopterin: coenzyme M methyltransferase in methanogenic archaebacteria is a membrane protein. Arch Microbiol 158: 208–217CrossRefGoogle Scholar
  9. Grahame DA (1989) Different isoenzymes of methylcobalamin: 2-mercaptoethanesulfonate methyltransferase predominate in methanol- versus acetate-grown Methanosarcina barkeri. J Biol Chem 264: 12890–12894PubMedGoogle Scholar
  10. Hewick RM, Hunkapiller MW, Hood LE, Dreyer WJ (1981) A gas-liquid solid phase peptide and protein sequenator. J Biol Chem 256: 7990–7997PubMedGoogle Scholar
  11. Hippe H, Caspari D, Fiebig K, Gottschalk G (1979) Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri. Proc Natl Acad Sci USA 76: 494–498CrossRefGoogle Scholar
  12. Karrasch M, Bott M, Thauer RK (1989) Carbonic anhydrase activity in acetate grown Methanosarcina barkeri. Arch Microbiol 151: 137–142CrossRefGoogle Scholar
  13. Keltjens JT, Drift C van der (1986) Electron transfer reactions in methanogens. FEMS Microbiol Rev 39: 259–303CrossRefGoogle Scholar
  14. Keltjens JT, Vogels GD (1993) Conversion of methanol and methylamines to methane and carbon dioxide. In: Ferry JG (ed) Methanogenesis. Chapman & Hall, New YorkGoogle Scholar
  15. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685CrossRefGoogle Scholar
  16. Mah RA, Ward DM, Baresi L, Glass TL (1977) Biogenesis of methane. Annu Rev Microbiol 31: 309–341CrossRefGoogle Scholar
  17. Meijden P van der, Heythuysen HJ, Pouwels A, Houwen F, Drift C van der, Vogels GD (1983a) Methyltransferase involved in methanol conversion by Methanosarcina barkeri. Arch Microbiol 134: 238–242CrossRefGoogle Scholar
  18. Meijden P van der, Jansen LPJM, Drift C van der, Vogels GD (1983b) Involvement of corrinoids in the methylation of coenzyme M (2-mercaptoethanesulfonic acid) by methanol and enzymes from Methanosarcina barkeri. FEMS Microbiol Lett 19: 247–251CrossRefGoogle Scholar
  19. Meijden P van der, Brömmelstroet BW te, Poirot CM, Drift C van der, Vogels GD (1984a) Purification and properties of methanol: 5-hydroxybenzimidazolylcobamide methyltransferase from Methanosarcina barkeri. J Bacteriol 160: 629–635PubMedPubMedCentralGoogle Scholar
  20. Meijden P van der, Lest C van der, Drift C van der, Vogels GD (1984b) Reductive activation of methanol: 5-hydroxybenzimidazolylcobamide methyltransferase of Methanosarcina barkeri. Biochem Biophys Res Commun 118: 760–766CrossRefGoogle Scholar
  21. Müller V, Kozianowski G, Blaut M, Gottschalk G (1987) Methanogenesis from trimethylamine+H2 by Methanosarcina barkeri is coupled to ATP formation by a chemiosmotic mechanism. Biochim Biophys Acta 892: 207–212CrossRefGoogle Scholar
  22. Naumann E, Fahlbusch K, Gottschalk G (1984) Presence of a trimethylamine: HS-coenzyme M methyltransferase in Methanosarcina barkeri. Arch Microbiol 138: 79–83CrossRefGoogle Scholar
  23. Schönheit P, Moll J, Thauer RK (1980) Growth parameters (K s, 536–1, Y s) of Methanobacterium thermoautotrophicum. Arch Microbiol 127: 59–65CrossRefGoogle Scholar
  24. Schwörer B, Thauer RK (1991) Activities of formylmethanofuran dehydrogenase, methylenetetrahydromethanopterin dehydrogenase, methylenetetrahydromethanopterin reductase, and heterodisulfide reductase in methanogenic bacteria. Arch Microbiol 155: 459–465CrossRefGoogle Scholar
  25. Taylor CD, Wolfe RS (1974) A simplified assay for coenzyme M (HSCH2CH2SO3). Resolution of methylcobalamin coenzyme M methyltransferase and use of sodium borohydride. J Biol Chem 249: 4886–4890PubMedGoogle Scholar
  26. Thauer RK, Hedderich R, Fischer R (1993) Reactions and enzymes involved in methanogenesis from CO2 and H2. In: Ferry JG (ed) Methanogenesis. Chapman & Hall, New YorkGoogle Scholar
  27. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41: 100–180PubMedPubMedCentralGoogle Scholar
  28. Weimer PJ, Zeikus JG (1978) One carbon metabolism in methanogenic bacteria. Cellular characterization and growth of Methanosarcina barkeri. Arch Microbiol 119: 49–57CrossRefGoogle Scholar
  29. Wheelis ML, Kandler O, Woese CR (1992) On the nature of global classification. Proc Natl Acad Sci USA 89: 2930–2934CrossRefGoogle Scholar
  30. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya. Proc Natl Acad Sci USA 87: 4576–4579CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Alexei Yeliseev
    • 1
    • 2
  • Peter Gärtner
    • 1
    • 2
  • Ulrike Harms
    • 1
    • 2
  • Dietmar Linder
    • 3
  • Rudolf K. Thauer
    • 1
    • 2
  1. 1.Laboratorium für Mikrobiologie des Fachbereichs Biologie der Philipps-Universität MarburgMarburg/LahnGermany
  2. 2.Max-Planck-Institut für Terrestrische Mikrobiologie MarburgMarburg/LahnGermany
  3. 3.Biochemisches Institut des Fachbereichs Humanmedizin der Justus-Liebig-Universität GiessenGiessenGermany

Personalised recommendations