Advertisement

Archives of Microbiology

, Volume 159, Issue 6, pp 512–520 | Cite as

Effect of changes in mineral composition and growth temperature on filament length and flagellation in the Archaeon Methanospirillum hungatei

  • D. M. Faguy
  • S. F. Koval
  • K. F. Jarrell
Original Papers

Abstract

Methanospirillum hungatei strains GP1 and JF1 when cultivated at 37°C in JMA medium grew as motile single cells or short chains of cells (typically 10–30 μm long). When M. hungatei was grown in low Ca2+ concentrations or with the divalent cation chelator EDTA, the organism grew as long non-flagellated filaments (up to 900 μm long). The two strains had different thresholds of calcium concentrations for long filament formation (<0.25 mM for GP1 and <0.15 mM for JF1) as well as different minimal Ca2+ requirements for growth. Both strains produced long, almost straight, filaments at Ca2+ concentrations near the minimum required for growth. At suboptimal growth temperatures the organisms still grew as short filaments but no longer possessed flagella. Western blot analysis indicated that flagellin monomer was present in cultures of long non-flagellated filaments and short non-flagellated cultures grown at suboptimal temperatures. The amount of flagellin present appeared to be equal in both non-flagellated and flagellated cultures. When cells were grown as long non-flagellated filaments and switched to growth conditions inducing short, flagellated forms, flagella were first observed at 2.5 h after this switch.

Key words

Methanospirillum Morphology Flagella Archaea Growth conditions Calcium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adachi T, Yamagata H, Tsukagoshi N, Udaka S (1991) Repression of the cell wall protein gene operon in Bacillus brevis 47 by magnesium and calcium ions. J Bacteriol 173: 4243–4245CrossRefGoogle Scholar
  2. Ayusawa D, Yoneda Y, Yamane K, Maruo B (1975) Pleiotropic phenomena in autolytic enzyme(s) content, flagellation, and simultaneous hyperproduction of extracellular α-amylase and protease in a Bacillus subtilis mutant. J Bacteriol 124: 459–469PubMedPubMedCentralGoogle Scholar
  3. Beveridge TJ (1979) Surface arrays on the wall of Sporosarcina ureae. J Bacteriol 139: 1039–1048PubMedPubMedCentralGoogle Scholar
  4. Beveridge TJ, Harris BJ and Sprott GD (1987) Septation and filament splitting in Methanospirillum hungatei. Can J Microbiol 33: 725–732CrossRefGoogle Scholar
  5. Beveridge TJ, Southam G, Jericho MH, Blackford BL (1990) High-resolution topography of the S-layer sheath of the archaebacterium Methanospirillum hungatei provided by scanning tunneling microscopy. J Bacteriol 172: 6589–6595CrossRefGoogle Scholar
  6. Beveridge TJ, Sprott GD, Whippey P (1991) Ultrastructure, inferred porosity, and Gram-staining character of Methanospirillum hungatei filament termini describe a unique cell permeability for this archaeobacterium. J Bacteriol 173: 130–140CrossRefGoogle Scholar
  7. Boone DR, Mah RA (1987) Effects of calcium, magnesium, pH, and extent of growth on the morphology of Methanosarcina mazei S-6. Appl Environ Microbiol 53: 1699–1700PubMedPubMedCentralGoogle Scholar
  8. Brunk CF, Jones KC, James TW (1979) Assay for nanogram quantities of DNA in cellular homogenates. Anal Biochem 92: 497–500CrossRefGoogle Scholar
  9. Faguy DM, Koval SF, Jarrell KF (1992) Correlation between glycosylation of flagellin proteins and sensitivity of flagellar filaments to Triton X-100 in methanogens. FEMS Lett 90: 129–134CrossRefGoogle Scholar
  10. Ferry JG, Smith PH, Wolfe RS (1974) Methanospirillum a new genus of methanogenic bacteria and characterization of Methanospirillum hungatii sp. nov. Int J Syst Bacteriol 24: 465–469CrossRefGoogle Scholar
  11. Galperin MY, Dibrov PA, Glagolev AN (1982) 519–1 is required for flagellar growth in Escherichia coli. FEBS Lett 143: 319–322CrossRefGoogle Scholar
  12. Jarrell KF, Kalmokoff ML (1988) Nutritional requirements of the methanogenic archaebacteria. Can J Microbiol 34: 557–576CrossRefGoogle Scholar
  13. Jarrell KF, Koval SF (1987) Ultrastructure and biochemistry of the cell wall of Methanococcus voltae. J Bacteriol 169: 1298–1306CrossRefGoogle Scholar
  14. Jarrell KF, Colvin JR, Sprott GD (1982) Spontaneous protoplast formation in Methanobacterium bryantii. J Bacteriol 149: 346–353PubMedPubMedCentralGoogle Scholar
  15. Koval SF (1988) Paracrystalline protein surface arrays on bacteria. Can J Microbiol 34: 407–414CrossRefGoogle Scholar
  16. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685CrossRefGoogle Scholar
  17. Leive L (1965) Release of lipopolysaccharide by EDTA treatment of E. coli. Biochem Biophys Res Commun 21: 290–296CrossRefGoogle Scholar
  18. Mayerhoffer LE, Macario AJL, Conway de Macario E (1992) Lamina, a novel multicellular form of Methanosarcina mazei S-6. J Bacteriol 174: 309–314CrossRefGoogle Scholar
  19. McGroarty EJ, Koffler H, Smith RW (1973) Regulation of flagellar morphogenesis by temperature: involvement of the bacterial cell surface in the synthesis of flagellin and the flagellum. J Bacteriol 113: 295–303PubMedPubMedCentralGoogle Scholar
  20. Ott M, Messner P, Hessemann J, Marre R, Hacker J (1991) Temperature-dependent expression of flagella in Legionella. J Gen Microbiol 137: 1955–1961CrossRefGoogle Scholar
  21. Patel GB, Roth AF, Berg L van den, Clark DS (1976) Characterization of a strain of Methanospirillum hungatii. Can J Microbiol 22: 1404–1410CrossRefGoogle Scholar
  22. Patel GB, Roth LA, Sprott GD (1979) Factors influencing filament length of Methanospirillum hungatii. J Gen Microbiol 112: 411–415CrossRefGoogle Scholar
  23. Patel GB, Sprott GD, Humphrey RW, Beveridge TJ (1986) Comparative analyses of the sheath structures of Methanothrix concilii GP6 and Methanospirillum hungatei GP1 and JF1. Can J Microbiol 32: 623–631CrossRefGoogle Scholar
  24. Perry RD, Brubaker RR (1987) Transport of Ca2+ by Yersinia pestis. J Bacteriol 169: 4861–4864CrossRefGoogle Scholar
  25. Schmidt JE, Macario AJL, Ahring BK, Conway de Macario E (1992) Effect of magnesium on methanogenic subpopulations in a thermophilic acetate-degrading granular consortium. Appl Environ Microbiol 58: 862–868PubMedPubMedCentralGoogle Scholar
  26. Southam G, Kalmokoff ML, Jarrell KF, Koval SF, Beveridge TJ (1990) Isolation, characterization, and cellular insertion of the flagella from two strains of the archaebacterium Methanospirillum hungatei. J Bacteriol 172: 3221–3228CrossRefGoogle Scholar
  27. Sprott GD, Beveridge TJ, Patel GB, Ferrante G (1986) Sheath disassembly in Methanospirillum hungatei strain GP1. Can J Microbiol 32: 847–854CrossRefGoogle Scholar
  28. Sumper M, Herrmann G (1978) Studies on the biosynthesis of bacterio-opsin: demonstration of the existence of protein species structurally related to bacterio-opsin. Eur J Biochem 89: 229–235CrossRefGoogle Scholar
  29. Towbin M, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76: 4350–4354CrossRefGoogle Scholar
  30. Whitman WB, Bowen TL, Boone DR (1992) The methanogenic bacteria. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology isolation, identification, and applications, vol. 1, 2nd edn. Springer, New York Berlin Heidelberg pp 719–767Google Scholar
  31. Wieland F, Paul G, Sumper M (1985) Halobacterial flagellins are sulfated glycoproteins. J Biol Chem 260: 15180–15185PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • D. M. Faguy
    • 1
  • S. F. Koval
    • 2
  • K. F. Jarrell
    • 1
  1. 1.Department of Microbiology and ImmunologyQueen's UniversityKingstonCanada
  2. 2.Department of Microbiology and ImmunologyUniversity of Western OntarioLondonCanada

Personalised recommendations