Archives of Microbiology

, Volume 159, Issue 6, pp 491–497 | Cite as

Bacterial sulphur respiration

  • Rolf Schauder
  • Achim Kröger

Key words

Sulphur respiration Polysulphide Wolinella succinogenes 

Non-standard abbreviations












Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams MWW (1990) The metabolism of hydrogen by extremely thermophilic, sulfur-dependent bacteria. FEMS Lett 75: 219–238CrossRefGoogle Scholar
  2. Barrett EL, Clark MA (1987) Tetrathionate reduction and production of hydrogen sulfide from thiosulfate. Microbiol Rev 51: 192–205PubMedPubMedCentralGoogle Scholar
  3. Belkin S, Wirsen CO, Jannasch HW (1986) A new sulphur-reducing, extremely thermophilic eubacterium from a submarine thermal vent. Appl Environ Microbiol 51: 1180–1185PubMedPubMedCentralGoogle Scholar
  4. Biebl H, Pfennig N (1977) Growth of sulfate-reducing bacteria with sulfur as electron acceptor. Arch Microbiol 112: 115–117CrossRefGoogle Scholar
  5. Blumentals II, Itoh M, Olson GJ, Kelly RM (1990) Role of polysulphides in reduction of elemental sulfur by the hyperthermophilic archaebacterium Pyrococcus furiosus. Appl Environ Microbiol 56: 1255–1262PubMedPubMedCentralGoogle Scholar
  6. Bokranz M, Mörschel E, Kröger A (1985) Phosphorylation and phosphate-ATP exchange catalyzed by the ATP synthase isolated from Wolinella succinogenes. Biochim Biophys Acta 810: 332–339CrossRefGoogle Scholar
  7. Bokranz M, Gutmann M, Körtner C, Kojro E, Fahrenholz F, Lauterbach F, Kröger A (1991) Cloning and nucleotide sequence of the structural genes encoding the formate dehydrogenase of Wolinella succinogenes. Arch Microbiol 156: 119–128CrossRefGoogle Scholar
  8. Bonch-Osmolovskaya EA, Stetter KO (1991) Interspecies hydrogen transfer in cocultures of thermophilic Archaea. System Appl Microbiol 14: 205–208CrossRefGoogle Scholar
  9. Bonch-Osmoloyskaya EA, Sokolova TG, Kostrikina NA, Zavarzin GA (1990) Desulfurella acetivorans gen. nov. and sp. nov. — a new thermophilic sulfur-reducing eubacterium. Arch Microbiol 153: 151–155CrossRefGoogle Scholar
  10. Boulègue J (1978) Solubility of elemental sulfur in water at 298 K. Phosphorus Sulfur 5: 127–128CrossRefGoogle Scholar
  11. Bronder M, Mell H, Stupperich E, Kröger A (1982) Biosynthetic pathways of Vibro succinogenes growing with fumarate as terminal electron acceptor and sole carbon source. Arch Microbiol 131: 216–223CrossRefGoogle Scholar
  12. Emmel T, Sand W, König WA, Bock E (1986) Evidence for the existence of a sulphur oxygenase in Sulfolobus brierleyj. J Gen Microbiol 132: 3415–3420Google Scholar
  13. Fauque G, Herve D, Le Gall J (1979) Structure-function relationship in hemoproteins: the role of cytochrome c 3 in the reduction of colloidal sulfur by sulfate-reducing bacteria. Arch Microbiol 121: 261–264CrossRefGoogle Scholar
  14. Fauque G, Le Gall J, Barton LL (1991) Sulfate-reducing and sulfur-reducing bacteria. In: Shively JM, Barton LL (eds) Variations in autotrophic life. Academic Press, London, pp 271–337Google Scholar
  15. Giggenbach W (1972) Optical spectra and equilibrium distribution of polysulfide ions in aqueous solution at 20°. Inorg Chem 11: 1201–1207CrossRefGoogle Scholar
  16. Hazeu W, Batenburg-van der Vegte WH, Bos P, Pas RK van der, Kuenen JG (1988) The production and utilization of intermediary elemental sulfur during the oxdidation of reduced sulfur compounds by Thiobacillus ferrooxidans. Arch Microbiol 150: 574–579CrossRefGoogle Scholar
  17. Huber R, Langworthy TA, König H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch Microbiol 144: 324–333CrossRefGoogle Scholar
  18. Huber R, Kristjansson JK, Stetter KO (1987) Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100°C. Arch Microbiol 149: 95–101CrossRefGoogle Scholar
  19. Kletzin A (1989) Coupled enzymatic production of sulfite, thiosulfate, and hydrogen sulfide from sulfur: purification and properties of a sulfur oxygenase reductase from the facultatively anaerobic archaebacterium Desulfurolobus ambivalens. J Bacteriol 171: 1638–1643CrossRefGoogle Scholar
  20. Klimmek O, Kröger A, Steudel R, Holdt G (1991) Growth of Wolinella succinogenes with polysulphide as terminal acceptor of phosphorylative electron transport. Arch Microbiol 155: 177–182CrossRefGoogle Scholar
  21. Krafft T, Bokranz M, Klimmek O, Schröder I, Fahrenholz F, Kojro E, Kröger A (1992) Cloning and nucleotide sequences of the genes encoding the polysulphide reductase of Wolinella succinogenes. Eur J Biochem 206: 503–510CrossRefGoogle Scholar
  22. Kröger A, Dorre E, Winkler E (1980) The orientation of the substrate sites of formate dehydrogenase and fumarate reductase in the membrane of Vibrio succinogenes. Biochim Biophys Acta 589: 118–136CrossRefGoogle Scholar
  23. Kröger A, Schröder I, Krems B, Klimmek O (1990) Phosphorylative electron transport without quinone. In: Hauska G, Thauer RK (eds) The molecular basis of bacterial metabolism. Springer, Berlin Heidelberg New York, pp 128–133CrossRefGoogle Scholar
  24. Kröger A, Geisler V, Lemma E, Theis F, Lenger R (1992) Bacterial fumarate respiration. Arch Microbiol 158: 311–314CrossRefGoogle Scholar
  25. Le Faou A, Rajagopal BS, Daniels L, Fauque G (1990) Thiosulfate, polythionates and elemental sulfur assimilation and reduction in the bacterial world. FEMS Microbiol Rev 75: 351–382CrossRefGoogle Scholar
  26. Macy JM, Schröder I, Thauer RK, Kröger A (1986) Growth of Wolinella succinogenes on H2S plus fumarate and on formate plus sulfur as energy sources. Arch Microbiol 144: 147–150CrossRefGoogle Scholar
  27. Malik B, Su WW, Wald HL, Blumentals II, Kelly RM (1988) Growth and gas production by the hyperthermophilic archaebactrium Pyrococcus furiosus. Biotechn Bioeng 32: 438–444CrossRefGoogle Scholar
  28. Mell H, Wellnitz C, Kröger A (1986) The electrochemical proton potential and the proton/electron ratio of the electron transport with fumarate in Wolinella succinogenes. Biochim Biophys Acta 852: 212–221CrossRefGoogle Scholar
  29. Müller A, Diemann E (1987) Polysulphide complexes of metals. Adv Inorg Chem 31: 89–122CrossRefGoogle Scholar
  30. Neuner A, Jannasch HW, Belkin S, Stetter KO (1990) Thermococcus litoralis sp. nov.: a new species of extremely thermophilic marine archaebacteria. Arch Microbiol 153: 205–207CrossRefGoogle Scholar
  31. Paulsen J (1987) ATP-getriebene Succinatoxidation im Katabolismus von Desulfuromonas acetoxidans. Doctoral thesis, Philipps-Universität MarburgGoogle Scholar
  32. Paulsen J, Kröger A, Thauer RK (1986) ATP-driven succinate oxidation in the catabolism of Desulfuromonas acetoxidans. Arch Microbiol 144: 78–83CrossRefGoogle Scholar
  33. Pfennig N, Biebl H (1976) Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol 110: 3–12CrossRefGoogle Scholar
  34. Schäfer T, Schönheit P (1992) Matose fermentation to acetate. CO2 and H2 in the anaerobic hyperthermophilic archaeon Pyrococcus furiosus: evidence for the operation of a novel sugar fermentation pathway. Arch Microbiol 158: 188–202CrossRefGoogle Scholar
  35. Schmitz RA, Bonch-Osmolovskaya EA, Thauer RK (1990) Different mechanisms of acetate activation in Desulfurella acetivorans and Desulfuromonas acetoxidans. Arch Microbiol 154: 274–279CrossRefGoogle Scholar
  36. Schröder I, Kröger A, Macy JM (1988) Isolation of the sulphur reductase and reconstitution of the sulphur respiration of Wolinella succinogenes. Arch Microbiol 149: 572–579CrossRefGoogle Scholar
  37. Schumacher W, Kroneck PMH, Pfennig N (1992) Comparative systematic study on “Spirillum” 5175, Campylobacter and Wolinella species. Description of “Spirillum” 5175 as Sulfurospirillum deleyianum gen. nov., spec. nov. Arch Microbiol 158: 287–293CrossRefGoogle Scholar
  38. Schwarzenbach G, Fischer A (1960) Die Acidität der Sulfane und die Zusammensetzung wässeriger Polysulfidlösungen. Helv Chim Acta 43: 1365–1388CrossRefGoogle Scholar
  39. Segerer A, Neuner A, Kristjansson JK, Stetter KO (1986) Acidianus infernus gen. nov., sp. nov. and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfurmetabolizing archaebacteria. Int J Syst Bacteriol 36: 559–564CrossRefGoogle Scholar
  40. Stetter KO, Gaag G (1983) Reduction of molecular sulphur by methanogenic bacteria. Nature 305: 309–311CrossRefGoogle Scholar
  41. Stetter KO, Zillig W (1985) Thermoplasma and the thermophilic sulfur-dependent archaebacteria. In: Woese CR, Wolfe RS (eds) The bacteria, vol VIII. Academic Press, Orlando, pp 85–165Google Scholar
  42. Stetter KO, König H, Stackebrandt E (1983) Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur reducing archaebacteria growing optimally at 105°C. Syst Appl Microbiol 4: 535–551CrossRefGoogle Scholar
  43. Stetter KO, Fiala G, Huber G, Huber R, Segerer A (1990) Hyperthermophilic microorganisms. FEMS Microbiol Rev 75: 117–124CrossRefGoogle Scholar
  44. Steudel R, Holdt G, Göbel T, Hazeu W (1987) Chromatographische Trennung höherer Polythionate SnO62- (n=3...22) und deren Nachweis in Kulturen von Thiobacillus ferrooxidans; molekulare Zusammensetzung bakterieller Schwefelausscheidungen. Angew Chem 99: 143–146CrossRefGoogle Scholar
  45. Teder A (1971) The quilibrium between elementary sulfur and aqueous polysulfide solutions. Acta Chem Scand 25: 1722–1728CrossRefGoogle Scholar
  46. Thauer RK, Möller-Zinkhan D, Spormann AM (1989) Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Annu Rev Microbiol 43: 43–67CrossRefGoogle Scholar
  47. Wloczyk C, Kröger A, Göbel T, Holdt G, Steudel R (1989) The electrochemical proton potential generated by the sulphur respiration of Wolinella succinogenes. Arch Microbiol 152: 600–605CrossRefGoogle Scholar
  48. Wolfe RS, Pfennig N (1977) Reduction of sulfur by Spirillum 5175 and syntrophism with Chlorobium. Appl Environ Microbiol 33: 427–433PubMedPubMedCentralGoogle Scholar
  49. Widdel F (1988) Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In: Zehnder AJB (ed) Biology of anerobic microorganisms. Wiley, New York, pp 469–585Google Scholar
  50. Zillig W, Stetter KO, Schäfer W, Janekovic D, Wunderl S, Holz I, Palm P (1981) Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from icelandic solfataras. Zentralbl Bakt Hyg, I Abt Orig C 2: 205–227Google Scholar
  51. Zillig W, Stetter WO, Prangishvilli D, Schäfer W, Wunderl S, Janekovic D, Holz I, Palm P (1982) Desulfurococcaceae, the second family of the extremely thermophilic, anaerobic, sulfurrespiring Thermoproteales. Zentralbl Bakt Hyg, I Abt Orig C3: 304–317Google Scholar
  52. Zillig W, Gierl A, Schreiber G, Wunderl S, Janekovic D, Stetter KO, Klenk HP (1983) The archaebacterium Thermofilum pendens represents a novel genus of the thermophilic anaerobic sulfur respiring Thermoproteales. Syst Appl Microbiol 4: 79–87CrossRefGoogle Scholar
  53. Zillig W, Yeats S, Holz I, Böch A, Rettenberger M, Gropp F, Simon G (1986) Desulfurolobus ambivalens, gen. nov., sp. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulfur. Syst Appl Microbiol 8: 197–203CrossRefGoogle Scholar
  54. Zillig W, Holz I, Klenk HP, Trent J, Wunderl S, Janekovic D, Imsel E, Haas B (1987) Pyrococcus woesei, sp. nov., an ultra-thermophilic marine archaebacterium, representing a novel order, Thermococcales. Syst Appl Microbiol 9: 62–70CrossRefGoogle Scholar
  55. Zöphel A, Kennedy MC, Beinert ZH, Kroneck PMH (1988) Investigations on microbial sulfur respiration. 1. Activation and reduction of elemental sulfur in several strains of eubacteria. Arch Microbiol 150: 72–77CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Rolf Schauder
    • 1
  • Achim Kröger
    • 1
  1. 1.Institut für Mikrobiologie der Johann-Wolfgang-Goethe-Universität Frankfurt am MainFrankfurt am MainGermany

Personalised recommendations