Archives of Microbiology

, Volume 154, Issue 3, pp 231–238

pH-Dependent metabolism of thiosulfate and sulfur globules in the chemolithotrophic marine bacterium Thiomicrospira crunogena

  • Barbara J. Javor
  • David B. Wilmot
  • Russell D. Vetter
Original Papers


Respiring cells of the chemolithotrophic bacterium Thiomicrospira crunogena produced sulfur globules from the sulfane sulfur of thiosulfate below pH 7, and consumed the globules above pH 7. The switch in metabolism was immediate and reversible upon titration of the culture. The consumed sulfur globules remained in a membrane-bound form and were not oxidized unless the medium was depleted of thiosulfate. Sulfur globule production but not uptake was blocked by azide. Anoxia, thiol-binding agents, and inhibitors of protein synthesis blocked globule uptake. Transitory accumulations of sulfite and polythionates appeared to be reaction products of thiosulfate and sulfur globules. A model depicting the pH sensitivity and biochemistry of sulfur globule production and consumption is proposed.

Key words

Chemolithotroph Thiomicrospira Thiosulfate Sulfur globules Sulfur-oxidizer Hydrothermal vent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adair FW (1966) Membrane-associated sulfur oxidation by the autotroph Thiobacillus thiooxidans. J Bacteriol 92:899–904Google Scholar
  2. Aminuddin M, Nicholas DJD (1973) Sulphide oxidation linked to the reduction of nitrate and nitrite in Thiobacillus denitrificans. Biochem Biophys Acta 325:81–93Google Scholar
  3. Charles AM, Suzuki I (1966) Mechanism of thiosulfate oxidation by Thiobacillus novellum. Biochem Biophys Acta 128:510–521Google Scholar
  4. Chen KY, Morris JC (1972) Kinetics of oxidation of aqueous sulfide by O2. Environ Sci Technol 6:529–537Google Scholar
  5. Fahey RC, Newton GL (1987) Determination of low-molecular-weight thiols using monobromobimane fluorescent labeling and high-performance liquid chromatography. In: Jacoby WB, Griffith OW (eds) Methods in enzymology, vol 143: Sulfur and sulfur amino acids. Academic Press, New York, pp 85–95Google Scholar
  6. Hazeu W, Batenburg-van der Vegte WH, Bos P, van der Pas RK, Kuenen JG (1988) The production and utilization of intermediary elemental sulfur during the oxidation of reduced sulfur compounds by Thiobacillus ferrooxidans. Arch Microbiol 150: 574–579Google Scholar
  7. Jannasch HW, Wirsen CO, Nelson DC, Robertson LA (1985) Thiomicrospira crunogena sp. nov., a colorless, sulfur-oxidizing bacterium from a deep-sea hydrothermal vent. Int J Syst Bacteriol 35:422–424Google Scholar
  8. Jones GE, Benson AA (1964) Phosphatidyl glycerol in Thiobacillus thiooxidans. J Bacteriol 89:260–261Google Scholar
  9. Kelly DP (1982) Biochemistry of the chemolithotrophic oxidation of inorganic sulphur. Philos Trans R Soc Lond B 298:499–528Google Scholar
  10. Kelly DP (1988) Oxidation of sulphur compounds. In: Cole JA, Ferguson SJ (eds) Nitrogen and sulfur cycles. Cambridge University Press, Cambridge. pp 65–97Google Scholar
  11. Kelly DP, Harrison AP (1989) Genus Thiobacillus Beijerinck 1904b, 597AL. In: Staley JT (ed) Bergey's manual of systematic bacteriology, vol 3. Williams and Wilkins, Baltimore, pp 1842–1858Google Scholar
  12. Kelly DP, Chambers LA, Trudinger PA (1963) Cyanolysis and spectrophotometric estimation of trithionate in a mixture with thiosulfate and tetrathionate. Anal Chem 41:898–901Google Scholar
  13. Kuenen JG, Veldkamp H (1972) Thiomicrospira pelophila, gen. n., sp. n., a new obligately chemolithotrophic colourless sulfur bacterium. Antonie van Leewenhoek J Microbiol Serol 38: 241–256Google Scholar
  14. Kuenen JG, Robertson LA (1989) Genus Thiomicrospira Kuenen and Veldkamp 1972, 253AL. In: Staley JT (ed) Bergey's manual of systematic bacteriology, vol 3. Williams and Wilkins, Baltimore, pp 1858–1861Google Scholar
  15. Lees H (1960) Energy metabolism in chemolithotrophic bacteria. Annu Rev Microbiol 14:83–98Google Scholar
  16. Moriarty DJW, Nicholas DJD (1970) Products of sulphide oxidation in extracts of Thiobacillus concretivorus. Biochim Biophys Acta 197:143–151Google Scholar
  17. Nelson DC, Jannasch HW (1983) Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Arch Microbiol 136:262–269Google Scholar
  18. O'Brien DJ, Birkner FB (1977) Kinetics of oxygenation of reduced sulfur species in aqueous solution. Environ Sci Technol 11:1114–1120Google Scholar
  19. Revsbech NP, Jørgensen BB, Blackburn TH, Cohen Y (1983) Microelectrode studies of the photosynthesis and O2, H2S and pH profiles of a microbial mat. Limnol Oceanogr 28:1062–1074Google Scholar
  20. Ruby EG, Jannasch HW (1982) Physiological characteristics of Thiomicrospira sp. strain L-12 isolated from deep-sea hydrothermal vents. J Bacteriol 149:161–165Google Scholar
  21. Ruby EG, Wirsen CO, Jannasch HW (1981) Chemolithothrophic sulfur-oxidizing bacteria from the Galapagos Rift hydrothermal vents. Appl Environ Microbiol 42:317–324Google Scholar
  22. Schedel M, Trüper HG (1980) Anaerobic oxidation of thiosulfate and elemental sulfur in Thiobacillus denitrificans. Arch Microbiol 124:205–210Google Scholar
  23. Schmidt M (1965) Reactions of the sulfur-sulfur bond. In: Meyer B (ed) Elemental sulfur. Chemistry and physics. Interscience, New York, pp 301–326Google Scholar
  24. Schmidt TM, Vinci VA, Strohl WR (1986) Protein synthesis by Beggiatoa alba B18LD in the presence and absence of sulfide. Arch Microbiol 144:158–162Google Scholar
  25. Smith AJ (1966) The role of tetrathionate in the oxidation of thiosulphate by Chromatium sp. strain D. J Gen Microbiol 42:371–380Google Scholar
  26. Sörbo B (1957) A colorimetric method for the determination of thiosulfate. Biochim Biophys Acta 23:416–421Google Scholar
  27. Steudel R (1989) On the nature of the “elemental sulfur” (S°) produced by sulfur-oxidization bacteria — a model for S° globules. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech Publishers, Madison, pp 289–303Google Scholar
  28. Steudel R, Holdt G, Gobel T, Hazeu W (1987) Chromatographic separation of higher polythionates SxO62- (n=3–22) and their detection in cultures of Thiobacillus ferrooxidans; molecular composition of bacterial sulfur secretions. Angew Chem, Int Ed Engl 26:151–153Google Scholar
  29. Steudel R, Gobel T, Holdt G (1988) The molecular composition of hydrophilic sulfur sols prepared by acid decomposition of thiosulfate. Z Naturforsch 43b:203–218Google Scholar
  30. Suzuki I, Silver M (1966) The initial product and properties of the sulfur-oxidizing enzyme of thiobacilli. Biochim Biophys Acta 122:22–33Google Scholar
  31. Szczepkovski TW (1958) Reactions of thiosulfate with cysteine. Nature 182:934–935Google Scholar
  32. Vetter RD, Matrai PA, Javor B, O'Brien J (1989) Reduced sulfur compounds in the marine environment; analysis by high-performance liquid chromatography. In: Saltzman ES, Cooper WJ (eds) Biogenic sulfur in the environment. ACS Symp Ser No. 393, American Chemical Society, pp 243–261Google Scholar
  33. Wood JL (1987) Sulfane sulfur. In: Jacoby WB, Griffith OW (eds) Methods in enzymology, vol 143; Sulfur and sulfur amino acids. Academic Press, New York, pp 85–96Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Barbara J. Javor
    • 1
  • David B. Wilmot
    • 1
  • Russell D. Vetter
    • 1
  1. 1.Scripps Institution of Oceanography, A-002University of California, San DiegoLa JollaUSA

Personalised recommendations