Advertisement

Archives of Microbiology

, Volume 161, Issue 1, pp 75–81 | Cite as

Buffer-stimulated citrate efflux in Penicillium simplicissimum: an alternative charge balancing ion flow in case of reduced proton backflow?

  • Wolfgang Burgstaller
  • Angelo Zanella
  • Franz Schinner
Original Papers

Abstract

Organic acids excreted by filamentous fungi may be used to win metals from industrial secondary raw materials. For a future commercial use a high production rate of organic acids is necessary. The conditions under which the commercially used fungus Aspergillus niger excretes high amounts of citric acid can not be maintained in metal leaching processes. However, Penicillium simplicissimum showed an enhanced citric acid efflux in the presence of an industrial filter dust containing 50% zinc oxide. Because Good buffers of high molarity were able to mimic the effect of zinc oxide, the high buffering capacity of zinc oxide and not an effect of the zinc ions was held responsible for the enhanced citric acid efflux. The presence of ammonium and trace elements reduced this buffer-stimulated citric acid efflux, whereas the plant hormone auxine canceled this reduction. This citric acid efflux was influenced by a depolarization of the membrane: the freely permeable compound tetraphenylphosphoniumbromide decreased the citric acid efflux, without decreasing intracellular citric acid or consumption of glucose and oxygen. Vanadate, an inhibitor of the plasma membrane H+-ATPase also reduced the buffer-stimulated citric acid efflux. The role of the efflux of citrate anions as an alternative charge balancing ion flow in case of impaired backflow of extruded protons because of a high extracellular buffering capacity is discussed.

Key words

Penicillium simplicissimum Citric acid efflux Extracellular buffer Membrane potential Plasma membrane H+-ATPase Leaching 

Abbreviations

CCCP

carbonyl cyanide m-chlorophenylhydrazone

delta μ

electrochemical potential gradient

DES

diethylstilbestrol

DMSO

dimethyl sulfoxide

TAPS

N-tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid

TEA

triethanolamine

TFP

trifluoperazine

TPP

tetraphenylphosphonium bromide

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bashford CL, Pasternak CA (1990) Setting of membrane potential. In: Pasternak CA (ed) Monovalent cations in biological systems. CRC Press, Boca Raton, Florida, pp 171–186Google Scholar
  2. Berthelin J (1988) Microbial weathering processes in natural environments. In: Lerman A, Meybeck M (eds) Physical and chemical weathering in geochemical cycles. Kluwer, Dordrecht, pp 33–59Google Scholar
  3. Borst-Pauwels GWFH (1981) Ion transport in yeast. Biochim Biophys Acta 650: 88–127Google Scholar
  4. Burgstaller W, Schinner F (1993) Leaching of metals with fungi. J Biotechnol 27: 91–116Google Scholar
  5. Burgstaller W, Strasser H, Wöbking H, Schinner F (1992) Solubilization of zinc oxide from filter dust with Penicillium simplicissimum: bioreactor leaching and stoichiometry. Environ Sci Technol 26: 340–346Google Scholar
  6. Calderon V, Cerbon J (1992) Interfacial pH modulation of membrane protein function in vivo. Effect of anionic phospholipids. Biochim Biophys Acta 1106: 251–256Google Scholar
  7. Cassio F, Leao C (1991) Low- and high-affinity transport system for citric acid in the yeast Candida utilis. Appl Environ Microbiol 57: 3623–3628Google Scholar
  8. Conway EJ, Brady TG (1950) Biological production of acid and alkali. 1. Quantitative relations of succinic and carbonic acids to the potassium and hydrogen ion exchange in fermenting yeast. Biochem J 47: 360–369Google Scholar
  9. Eddy AA (1982) Mechanisms of solute transport in selected eukaryotic microorganisms. Adv Microbial Physiol 23: 1–78Google Scholar
  10. Ford T, Mitchell R. (1990) The ecology of microbial corrosion. In: Marshall KC (ed) Advances in microbial ecology, vol 11. Plenum Press, New York, pp 231–262Google Scholar
  11. Franz A (1990) Regulation der Citronensäureproduktion bei Penicillium sp. in submersen Metall-Laugungsprozessen. Thesis, University of InnsbruckGoogle Scholar
  12. Franz A, Burgstaller W, Schinner F (1991) Leaching with Penicillium simplicissimum: influence of metals and buffers on proton extrusion and citric acid production. Appl Environ Microbiol 57: 769–774Google Scholar
  13. Franz A, Burgstaller W, Müller B, Schinner F (1993) Influence of medium components and metabolic inhibitors on citric acid production by Penicillium simplicissimum. J Gen Microbiol (in press)Google Scholar
  14. Iske U, Glombitza F, Huber H, Stetter KO (1991) Leaching of carbonate and/or alkali containing ore materials by chemolithoautotrophic moderately acidophilic bacteria. In: Verachtert H, Verstraete W (eds) International Symposium Environmental Biotechnology, vol. 2, Royal Flemish Society of Engineers, Belgium, pp 501–504.Google Scholar
  15. Jaklitsch WM, Kubicek CP, Scrutton MC (1991) Intracellular location of enzymes involved in citrate production by Aspergillus niger. Can J Microbiol 37: 823–827Google Scholar
  16. Kulakovskaya TV, Matys SV, Okorov LA (1991) Transport of organic acid anions and guanosine into vacuoles of Saccharomyces pastorianus. Yeast 7: 495–501Google Scholar
  17. Kubicek CP (1988) Regulatory aspects of the tricarboxylic acid cycle in filamentous fungi — a review. Trans Br Mycol Soc 90: 339–349Google Scholar
  18. Kubicek CP, Röhr M (1986) Citric acid fermentation. CRC Crit Rev Biotechnol 3: 331–373Google Scholar
  19. Packer HL, Keshavarz-Moore E, Lilly MD, Thomas CR (1992) Estimation of cell volume and biomass of Penicillium chrysogenum using image analysis. Biotechnol Bioeng 39: 384–391Google Scholar
  20. Pena A, Cinco G, Gomez-Puyou A, Tuena M (1972) Effect of the pH of incubation medium on glycolysis and respiration in Saccharomyces cerevisiae. Arch Biochem Biophys 153: 413–425Google Scholar
  21. Roos W, Slavik J (1987) Intracellular pH topography of Penicillium cyclopium protoplasts. Maintenance of delta pH by both passive and active mechanisms. Biochim Biophys Acta 899: 67–75Google Scholar
  22. Sanders D (1988) Fungi. In: Baker DA, Hall JL (eds) Solute transport in plant cells and tissues. Longman Scientific & Technical, Harlow, pp 106–165Google Scholar
  23. Sentenae H, Thibaud J-B, Grignon C (1989) Surface pH, bicarbonate and H+-cotransport coupling in corn roots. In: Dainty J, De Michelis MI, Marre E, Rasi-Caldogno F (eds) Plant membrane transport: the current position. Elsevier, Amsterdam, pp 611–614Google Scholar
  24. Serrano R (1985) Plasma membrane ATPase of plants and fungi. CRC Press, Boca Raton, Florida, p 90Google Scholar
  25. Serrano R (1989) Structure and function of plasma membrane ATPase. Annu Rev Plant Physiol Plant Mol Biol 40: 61–94Google Scholar
  26. Severin J, Langel P, Höfer M (1989) Analysis of the H+/sugar symport in yeast under conditions of depolarized plasma membrane. J Bioenerget Biomembr 21: 321–334Google Scholar
  27. Sigg L, Stumm W (1989) Aquatische Chemie. Verlag der Fachvereine, Zürich, p 251Google Scholar
  28. Sigler K, Höfer M (1991) Mechanisms of acid extrusion in yeast. Biochim Biophys Acta 1071: 375–391Google Scholar
  29. Sillen LG, Martell AE (1964) Stability constants of metal-ion complexes. Special Publication of the Chemical Society No. 17, London, p477Google Scholar
  30. Slayman CL (1977) Energetics and control of transport in Neurospora. In: Jungreis AM, Hodges TK, Kleinzeller A, Schultz SG (eds) Water relations in membrane transport in plants and animals, Academic Press, New York, pp 69–86Google Scholar
  31. Slayman CL, Kaminski P, Stetson D (1990) Structure and function of fungal plasma-membrane ATPase. In: Kuhn PJ, Trinci APJ, Jung MJ, Goosey MW, Copping LG (eds) Biochemistry of cell walls and membranes in fungi. Springer, Berlin Heidelberg New York, pp 299–316Google Scholar
  32. Smith JAC, Bryce JH (1992) Metabolite compartmentation and transport in CAM plants. In: Tobin AK (ed) Society for Experimental Biology Seminar Series 50: Plant Organelles. Cambridge University Press, Cambridge, pp 141–167Google Scholar
  33. Wallrath J, Schmidt M, Weiss H (1991) Concomitant loss of respiratory chain NADH: ubiquinone reductase (complex I) and citric acid accumulation in Aspergillus niger. Appl Microbiol Biotechnol 36: 76–81Google Scholar

Copyright information

© Springer Verlag 1994

Authors and Affiliations

  • Wolfgang Burgstaller
    • 1
  • Angelo Zanella
    • 1
  • Franz Schinner
    • 1
  1. 1.Christian Doppler Laboratory of Environmental BiotechnologyInnsbruckAustria

Personalised recommendations