Advertisement

Archives of Microbiology

, Volume 154, Issue 6, pp 594–599 | Cite as

Isolate B12, which harbours a virus-like element, represents a new species of the archaebacterial genus Sulfolobus, Sulfolobus shibatae, sp. nov.

  • Dennis Grogan
  • Peter Palm
  • Wolfram Zillig
Original Papers

Abstract

The Sulfolobus isolate B12 and its endogenous virus-like element SSV1 have provided a fruitful system for detailed analysis of certain aspects of archaebacterial molecular biology, especially those concerning gene expression. In the course of clarifying this isolate's taxonomic position, we determined DNA base composition, ability to grow autotrophically, nucleotide sequence of 16S ribosomal RNA, and level of total genomic homology to other Sulfolobus strains. Although the results generally demonstrate a similarity to S. solfataricus, DNA-DNA hybridisation and 16S rRNA sequence data indicate that isolate B12 in fact represents a distinct species.

Key words

Sulfolobus isolate B12 Archaebacterial taxonomy G+C content Sulphur oxidation DNA-DNA hybridisation 16S rRNA sequence 

Abbreviations

DSM

Deutsche Sammlung von Mikroorganismen, Mascheroder Weg 1 B, D-3300 Braunschweig, FRG

SDS-PAGE

sodium dodecyl sulphate-polyacrylamide gel electrophoresis

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achenbach-Richter L, Gupta R, Zillig W, Woese CR (1988) Rooting the archaeabacteria tree: The pivotal role of Thermococcus celer in archaebacterial evolution. Syst Appl Microbiol 10: 231–240Google Scholar
  2. Bohlool BB, Brock TD (1973) Population ecology of Sulfolobus acidocaldarius. II. Immunoecological studies. Arch Microbiol 97: 181–194Google Scholar
  3. Brock TD (1974) Sulfolobus. In: Buchanan RE, Gibbons NE (eds) Bergey's manual of determinative microbiology, 8th edn. Williams and Wilkins, Baltimore, pp 461–462Google Scholar
  4. Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Microbiol 84: 54–68Google Scholar
  5. Carbon P, Ehresmann C, Ehresmann B, Ebel JP (1979) The complete nucleotide sequence of the ribosomal 16S RNA from Escherichia coli. Experimental details and cistron heterogeneities. Eur J Biochem 100: 399–410Google Scholar
  6. DeRosa M, Gambacorta A, Bu'Lock JD (1975) Extremely thermophilic acidophilic bacteria convergent with Sulfolobus acidocaldarius. J Gen Microbiol 86: 156–164Google Scholar
  7. Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12: 387–395Google Scholar
  8. Feinberg AP, Vogelstein B (1983) A technique for radio-labeling DNA restriction fragments to high specific activity. Anal Biochem 132: 6–13Google Scholar
  9. Grogan DW (1989) Phenotypic characterization of the archaebacterial genus Sulfolobus: Comparison of five wild-type strains. J Bacteriol 171: 6710–6719Google Scholar
  10. Huber G, Spinnler C, Gambacorta A, Stetter KO (1989) Metallosphaera sedula, gen. and sp. nov. represents a new genus of metal-mobilizing, thermoacidophilic archaebacteria. Syst Appl Microbiol 12: 38–47Google Scholar
  11. Hui I, Dennis PP (1985) Characterization of the ribosomal RNA gene clusters in Halobacterium cutirubrum. J Biol Chem 260: 899–906Google Scholar
  12. Jarsch M, Böck A (1985) Sequence of the 16S ribosomal RNA gene from Methanococcus vannielii. Syst Appl Microbiol 6: 54–59Google Scholar
  13. Johnson JL (1984) Contributions of nucleic acid studies to bacterial taxonomy. In: Krieg M (ed) Bergey's manual of systematic microbiology, vol 1. Williams and Wilkins, Baltimore, p 11Google Scholar
  14. Johnson JL (1985) DNA reassocciation and RNA hybridisation of bacterial nucleic acids. In: Gottschalk G (ed) Methods in microbiology, vol 18. Academic Press, London, pp 33–74Google Scholar
  15. Kaine BP, Schurke C, Stetter KO (1989) Genes for the 16S and 5S ribosomal RNAs and the 7S RNA of Pyrodictium occultum. Syst Appl Microbiol 12: 8–14Google Scholar
  16. Klenk H-P, Haas B, Schwass V, Zillig W (1986) Hybridization homology: A new parameter for the analysis of phylogenetic relations, demonstrated within the urkingdom of the archaebacteria. J Mol Evol 24: 167–173Google Scholar
  17. Martin A, Yeats S, Janekovic D, Reiter W-D, Aicher W, Zillig W (1984) SAV1, a temperate UV-inducible DNA virus-like particle from the archaebacterium Sulfolobus acidocaldarius isolate B12. EMBO J 3: 2165–2168Google Scholar
  18. Mirault ME, Scherrer K (1971) Isolation of preribosomes from HeLa cells and their characterisation by electrophoresis on uniform and exponential-gradient-polyacrylamide gels. Eur J Biochem 23: 372–386Google Scholar
  19. Olsen GJ, Pace NR, Nuell M, Kaine BP, Gupta R, Woese CR (1985) Sequence of the 16S rRNA gene from the thermoacidophilic archaebacterium Sulfolobus solfataricus and its evolutionary implications. J Mol Evol 22: 301–307Google Scholar
  20. Ponez M, Solowiejxzyk D, Ballantine M, Schwartz E, Surrey S (1982) “Nonrandom” DNA sequence analysis in bacteriophage M13 by the dideoxy chain-termination method. Proc Natl Acad Sci USA 79: 4298–4302Google Scholar
  21. Prünschenk R, Baumeister W, Zillig W (1987) Surface structure variants in different species of Sulfolobus. FEMS Microbiol Lett 43: 327–330Google Scholar
  22. Reiter W-D, Palm P, Henschen A, Lottspeich F, Zillig W, Grampp B (1987) Identification and characterization of the genes encoding three structural proteins of the Sulfolobus virus-like particle SSV1. Mol Gen Genet 206: 144–153Google Scholar
  23. Reiter W-D, Palm P, Zillig W (1988a) Analysis of transcription in the archaebacterium Sulfolobus indicates that archaebacterial promoters are homologous to eukaryotic pol II promoters. Nucleic Acids Res 16: 1–9Google Scholar
  24. Reiter W-D, Palm P, Zillig W (1988b) Transcription termination in the archaebacterium Sulfolobus: signal structures and linkage to transcription initiation. Nucleic Acids Res 16: 2445–2459Google Scholar
  25. Reiter W-D, Palm P, Yeats S (1989) Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res 17: 1907–1914Google Scholar
  26. Rubtsov PM, Musakhanov MM, Zakharyev VM, Krayev AS, Skryabin KG, Bayev AA (1980) The structure of the yeast ribosomal RNA genes. I. The complete nucleotide sequence of the 18S ribosomal RNA gene from Saccharomyces cerevisiae. Nucleic Acids Res 8: 5779–5794Google Scholar
  27. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467Google Scholar
  28. Sanger F, Coulson AR, Barrell BG, Smith AJH, Roe BA (1980) Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol 143: 161–178Google Scholar
  29. Schägger H, Jagow Gvon (1987) Tricine-sodium dodecyl sulfatepolyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166: 368–379Google Scholar
  30. Segerer A, Neuner A, Kristjansson J, Stetter KO (1986) Acidianus infernus, gen. nov., sp. nov.: Facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int J System Bacteriol 36: 559–564Google Scholar
  31. Shivvers DW, Brock TD (1973) Oxidation of elemental sulfur by Sulfolobus acidocaldarius. J Bacteriol 114: 706–710Google Scholar
  32. Staden R (1980) A new computer method for the storage and manipulation of DNA gel reading data. Nucleic Acids Res 8: 3673–3694Google Scholar
  33. Stetter KO (1986) Diversity of extremely thermophilic archaebacteria. In: Brock TD (ed) Thermophiles: General, molecular and applied microbiology. John Wiley, New York, pp 39–74Google Scholar
  34. Volkin E, Astrachan L, Countryman JL (1958) Metabolism of RNA phosphorus in Escherichia coli infected with bacteriophage T7. Virology 6: 545–555Google Scholar
  35. Woese CR, Olsen GJ (1986) Archaebacterial phylogeny: perspectives on the urkingdoms. Syst Appl Microbiol 7: 161–177Google Scholar
  36. Woese CR, Gupta R, Hahn CM, Zillig W, Tu J (1984) The phylogenetic relationships of three sulfur dependent archaebacteria. Syst Appl Microbiol 5: 97–105Google Scholar
  37. Yeats S, McWilliam P, Zillig W (1982) A plasmid in the archaebacterium Sulfolobus acidocaldarius. EMBO J 1: 1035–1038Google Scholar
  38. Zillig W, Stetter KO, Wunderl S, Schulz W, Priess H, Scholz I (1980) The Sulfolobus-“Caldariella” group: Taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125: 259–269Google Scholar
  39. Zillig W, Yeats S, Holz I, Böck A, Rettenberger M, Gropp F, Simon G (1986) Desulfurolobus ambivalens, gen. nov. sp. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulfur. Syst Appl Microbiol 8: 197–203Google Scholar
  40. Zillig W, Palm P, Reiter W-D, Gropp F, Puehler G, Klenk H-P (1988a) Comparative evaluation of gene expression in archaebacteria. Eur J Biochem 173: 473–482Google Scholar
  41. Zillig W, Reiter W-D, Palm P, Gropp F, Neumann H, Rettenberger M (1988b) Viruses of archaebacteria. In: Calendar RM (ed) The bacteriophages, vol I. Plenum Press, New York, pp 517–558Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Dennis Grogan
    • 1
  • Peter Palm
    • 1
  • Wolfram Zillig
    • 1
  1. 1.Max-Planck-Institut für BiochemieMartinsriedFederal Republic of Germany

Personalised recommendations