Advertisement

Experimental Brain Research

, Volume 68, Issue 2, pp 445–448 | Cite as

Plasticity and rigidity in the representation of the human visual field

  • E. Pöppel
  • P. Stoerig
  • N. Logothetis
  • W. Fries
  • K. -P. Boergen
  • W. Oertel
  • J. Zihl
Research Note

Summary

Neuronal plasticity in the mammalian visual system has been studied with a variety of experimental methods like induction of artificial squint and eye rotation. To investigate neuronal plasticity in the human visual system, we examined a patient with a congenital convergent squint of his left eye, who later suffered a vascular lesion in his left occipital lobe that led to an incomplete hemianopia in his right visual field. The examination revealed that the visual field representation in the striate cortex is rigidly prewired with reference to the anatomical fovea. In contrast, plasticity in the oculomotor system enables the patient to use a functional visual axis that does not correspond to the anatomical fovea. Local alterations of sensitivity within the visual field that indicate interactions among non-corresponding retinal points provide additional evidence of functional plasticity.

Key words

Visual field Squint Oculomotorsystem Hemianopsia Local plasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blakemore C, van Sluyters RC, Peck CK, Hein A (1975) Development of cat visual cortex following rotation of one eye. Nature (Lond) 257: 584–586Google Scholar
  2. Crewther SG, Crewther DP, Peck CK, Pettigrew JD (1980) Visual cortical effects rearing cats with monocular or binocular cyclotorsion. J Neurophysiol 44: 97–118Google Scholar
  3. Cynader M, Gardner JC, Mustari M (1984) Effects of neonatally induced strabismus on binocular responses in cat area 18. Exp Brain Res 53: 384–399Google Scholar
  4. Gilbert CD, Wiesel TN (1985) Intrinsic connectivity and receptive field properties in visual cortex. Vision Res 25: 365–374Google Scholar
  5. Holmes G (1918) Disturbances of vision by cerebral lesions. Br J Ophthal 2: 353–384Google Scholar
  6. Hubel DH, Wiesel TN (1965) Binocular interaction in striate cortex of kittens reared with artificial squint. J Neurophysiol 28: 1041–1059Google Scholar
  7. Logothetis N (1984) Extrafoveale Augenbewegungen beim Menschen. Unpublished dissertation Medical Faculty, Ludwig-Maximilians-Universität MünchenGoogle Scholar
  8. Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65: 37–100Google Scholar
  9. Pöppel E (1986) Long-range colour-generating interactions across the retina. Nature 320: 523–525Google Scholar
  10. Pöppel E, Harvey LO (1973) Light-difference threshold and subjective brightness in the periphery of the visual field. Psychol Forsch 36: 145–161Google Scholar
  11. Sloan LL (1971) The Tübinger perimeter of Harms and Aulhorn. Arch Ophthal 86: 612–622Google Scholar
  12. Teuber H-L, Battersby WS, Bender MB (1960) Visual field defects after missile wounds of the brain. Harvard University Press, CambridgeGoogle Scholar
  13. Wiesel TN (1982) Postnatal development of the visual cortex and the influence of environment. Nature (Lond) 299: 583–591Google Scholar
  14. Yinon U (1975) Eye rotation in developing kittens: the effect on ocular dominance and receptive field organization of cortical cells. Exp Brain Res 24: 215–218Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • E. Pöppel
    • 1
  • P. Stoerig
    • 1
  • N. Logothetis
    • 1
  • W. Fries
    • 1
  • K. -P. Boergen
    • 1
  • W. Oertel
    • 1
  • J. Zihl
    • 1
  1. 1.Institut für Medizinische PsychologieMünchen 2Federal Republic of Germany

Personalised recommendations