Advertisement

Archives of Microbiology

, Volume 156, Issue 5, pp 385–391 | Cite as

Evidence for two uptake systems in Rhizobium leguminosarum for hydroxy-aromatic compounds metabolized by the 3-oxoadipate pathway

  • C. M. Wong
  • M. J. Dilworth
  • A. R. Glenn
Original Papers

Abstract

Rhizobium leguminosarum biovar viciae and Rhizobium leguminosarum biovar trifolii have separate uptake systems for 4-hydroxybenzoate and protocatechuate. The 4-hydroxybenzoate uptake system (pobP) is inhibited by a range of compounds with substitution at the 4-position on the aromatic ring whereas the uptake system for protocatechuate (pcaP) is markedly inhibited only by other dihydroxybenzoic acids. The rate of 4-hydroxybenzoate uptake is very low in Rhizobium leguminosarum and Rhizobium trifolii grown on protocatechuate but mutants defective in 4-hydroxybenzoate uptake transport protocatechuate at rates similar to the wild-type grown under similar conditions.

Key words

Rhizobium leguminosarum Aromatic metabolism Aromatic uptake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alibert G (1973) Séparation et dosage automatisés des acides phénoliques végétaux par chromatographie sur colonne de Polyclar et spectrophotométrie dans l'ultra violet. J Chromatography 80: 173–185Google Scholar
  2. Beringer JE, Hopwood OA (1976) Chromosomal recombination and mapping in Rhizobium leguminosarum. Nature 264: 291–293Google Scholar
  3. Beringer JE, Beynon JL, Buchanan-Wollaston AV, Johnston AWB (1978) Transfer of the drug resistance transposon Tn5 to Rhizobium. Nature 276: 633–634Google Scholar
  4. Brown CM, Dilworth MJ (1975) Ammonia assimilation by Rhizobium cultures and bacteroids. J Gen Microbiol 86: 39–48Google Scholar
  5. Buchanan-Wollaston V (1979) Generalized transduction in Rhizobium leguminosarum. J Gen Microbiol 112: 135–142Google Scholar
  6. Canovas JL, Stanier RY (1967) Regulation of the enzymes of the α-ketoadipate pathway in Moraxella calcoaceticus. Eur J Biochem 1: 289–300Google Scholar
  7. Chen YP, Glenn AR, Dilworth MJ (1984a) Uptake and oxidation of aromatic substrates by Rhizobium leguminosarum MNF3841 and Rhizobium trifolii TA1. FEMS Microbiol Lett 21: 201–205Google Scholar
  8. Chen YP, Dilworth MJ, Glenn AR (1984b) Aromatic metabolism in Rhizobium trifolii — protocatechuate 3,4-dioxygenase. Arch Microbiol 138: 187–190Google Scholar
  9. Chen YP, Glenn AR, Dilworth MJ (1985) Aromatic metabolism in Rhizobium trifolii — catechol 1,2-dioxygenase. Arch Microbiol 141: 225–228Google Scholar
  10. Chen YP, Dilworth MJ, Glenn AR (1989) Degradation of mandelate and 4-hydroxymandelate by Rhizobium leguminosarum biovar trifolii TA1. Arch Microbiol 151: 520–523Google Scholar
  11. Dilworth MJ, McKay I, Franklin MF, Glenn AR (1983) Catabolite effects on enzyme induction and substrate utilization in Rhizobium leguminosarum. J Gen Microbiol 129: 359–366Google Scholar
  12. Dilworth MJ, Glenn AR (1985) Transport in Rhizobium and its significance to the legume symbiosis. In: Ludden PW, Burns JE (eds) Nitrogen fixation and CO2 fixation. Elsevier, Amsterdam, pp 53–61Google Scholar
  13. Doten RC, Ngai K-L, Mitchell DJ, Ornston LN (1987) Cloning and genetic organization of the pca gene cluster from Acinetobacter calcoaceticus. J Bacteriol 169: 3168–3174Google Scholar
  14. Durham DR, Stirling LA, Ornston LN, Perry JJ (1980) Intergenic evolutionary homology revealed by the study of protocatechuate 3,4 dioxygenase from Azotobacter vinelandii. Biochem 19: 149–155Google Scholar
  15. Gajendiran N, Mahadevan A (1990) Growth of Rhizobium sp. in the presence of catechol. Plant Soil 125: 207–211Google Scholar
  16. Glenn AR, Arwas R, McKay IA, Dilworth MJ (1984) Fructose metabolism in wildtype, fructokinase-negative and revertant strains of Rhizobium leguminosarum. J Gen Microbiol 130: 231–237Google Scholar
  17. Hughes EJ, Shapiro MK, Houghton JE, Ornston LN (1988) Cloning and expression of pca genes from Pseudomonas putida in Escherichia coli. J Gen Microbiol 134: 2877–2887Google Scholar
  18. Johnston AWB, Beringer JE (1975) Identification of the Rhizobium strains in pea root nodules using genetic markers. J Gen Microbiol 87: 343–350Google Scholar
  19. Johnston AWB, Beringer JE (1977) Chromosomal recombination between Rhizobium species. Nature 267: 611–613Google Scholar
  20. Kemp MB, Hegeman GD (1968) Genetic control of the β-ketoadipate pathway in Pseudomonas aeruginosa. J Bacteriol 96: 1488–1499Google Scholar
  21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurements with the Folin phenol reagent. J Biol Chem 193: 265–275Google Scholar
  22. Parke D, Ornston LN (1976) Constitutive synthesis of enzymes of the protocatechuate pathway and of the β-ketoadipate uptake system in mutant strains of Pseudomonas putida. J Bacteriol 126: 272–281Google Scholar
  23. Parke D, Ornston LN (1986) Enzymes of the β-ketoadipate pathway are inducible in Rhizobium and Agrobacterium spp. and constitutive in Bradyrhizobium spp. J Bacteriol 165: 288–292Google Scholar
  24. Parke D, Rynne F, Glenn AR (1991) Regulation of genes for phenolic catabolism in Rhizobium leguminosarum biovar trifolii J Bacteriol (in press)Google Scholar
  25. Rosendahl L, Glenn AR, Dilworth MJ (1991) Organic and inorganic inputs into legume root nodule nitrogen fixation. In: Dilworth MJ, Glenn AR (eds) Biology and biochemistry of nitrogen fixation. Elsevier, Amsterdam, pp 259–291Google Scholar
  26. Stanier RY, Ornston LN (1973) The β-ketoadipate pathway. In: Rose AH, Tempest DW (eds) Advances in microbial physiology, vol. 9. Academic Press, London, pp 89–149Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • C. M. Wong
    • 1
  • M. J. Dilworth
    • 1
  • A. R. Glenn
    • 1
  1. 1.Nitrogen Fixation Research Group, School of Biological and Environmental SciencesMurdoch UniversityMurdochAustralia

Personalised recommendations