Archives of Microbiology

, Volume 156, Issue 5, pp 385–391 | Cite as

Evidence for two uptake systems in Rhizobium leguminosarum for hydroxy-aromatic compounds metabolized by the 3-oxoadipate pathway

  • C. M. Wong
  • M. J. Dilworth
  • A. R. Glenn
Original Papers


Rhizobium leguminosarum biovar viciae and Rhizobium leguminosarum biovar trifolii have separate uptake systems for 4-hydroxybenzoate and protocatechuate. The 4-hydroxybenzoate uptake system (pobP) is inhibited by a range of compounds with substitution at the 4-position on the aromatic ring whereas the uptake system for protocatechuate (pcaP) is markedly inhibited only by other dihydroxybenzoic acids. The rate of 4-hydroxybenzoate uptake is very low in Rhizobium leguminosarum and Rhizobium trifolii grown on protocatechuate but mutants defective in 4-hydroxybenzoate uptake transport protocatechuate at rates similar to the wild-type grown under similar conditions.

Key words

Rhizobium leguminosarum Aromatic metabolism Aromatic uptake 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alibert G (1973) Séparation et dosage automatisés des acides phénoliques végétaux par chromatographie sur colonne de Polyclar et spectrophotométrie dans l'ultra violet. J Chromatography 80: 173–185Google Scholar
  2. Beringer JE, Hopwood OA (1976) Chromosomal recombination and mapping in Rhizobium leguminosarum. Nature 264: 291–293Google Scholar
  3. Beringer JE, Beynon JL, Buchanan-Wollaston AV, Johnston AWB (1978) Transfer of the drug resistance transposon Tn5 to Rhizobium. Nature 276: 633–634Google Scholar
  4. Brown CM, Dilworth MJ (1975) Ammonia assimilation by Rhizobium cultures and bacteroids. J Gen Microbiol 86: 39–48Google Scholar
  5. Buchanan-Wollaston V (1979) Generalized transduction in Rhizobium leguminosarum. J Gen Microbiol 112: 135–142Google Scholar
  6. Canovas JL, Stanier RY (1967) Regulation of the enzymes of the α-ketoadipate pathway in Moraxella calcoaceticus. Eur J Biochem 1: 289–300Google Scholar
  7. Chen YP, Glenn AR, Dilworth MJ (1984a) Uptake and oxidation of aromatic substrates by Rhizobium leguminosarum MNF3841 and Rhizobium trifolii TA1. FEMS Microbiol Lett 21: 201–205Google Scholar
  8. Chen YP, Dilworth MJ, Glenn AR (1984b) Aromatic metabolism in Rhizobium trifolii — protocatechuate 3,4-dioxygenase. Arch Microbiol 138: 187–190Google Scholar
  9. Chen YP, Glenn AR, Dilworth MJ (1985) Aromatic metabolism in Rhizobium trifolii — catechol 1,2-dioxygenase. Arch Microbiol 141: 225–228Google Scholar
  10. Chen YP, Dilworth MJ, Glenn AR (1989) Degradation of mandelate and 4-hydroxymandelate by Rhizobium leguminosarum biovar trifolii TA1. Arch Microbiol 151: 520–523Google Scholar
  11. Dilworth MJ, McKay I, Franklin MF, Glenn AR (1983) Catabolite effects on enzyme induction and substrate utilization in Rhizobium leguminosarum. J Gen Microbiol 129: 359–366Google Scholar
  12. Dilworth MJ, Glenn AR (1985) Transport in Rhizobium and its significance to the legume symbiosis. In: Ludden PW, Burns JE (eds) Nitrogen fixation and CO2 fixation. Elsevier, Amsterdam, pp 53–61Google Scholar
  13. Doten RC, Ngai K-L, Mitchell DJ, Ornston LN (1987) Cloning and genetic organization of the pca gene cluster from Acinetobacter calcoaceticus. J Bacteriol 169: 3168–3174Google Scholar
  14. Durham DR, Stirling LA, Ornston LN, Perry JJ (1980) Intergenic evolutionary homology revealed by the study of protocatechuate 3,4 dioxygenase from Azotobacter vinelandii. Biochem 19: 149–155Google Scholar
  15. Gajendiran N, Mahadevan A (1990) Growth of Rhizobium sp. in the presence of catechol. Plant Soil 125: 207–211Google Scholar
  16. Glenn AR, Arwas R, McKay IA, Dilworth MJ (1984) Fructose metabolism in wildtype, fructokinase-negative and revertant strains of Rhizobium leguminosarum. J Gen Microbiol 130: 231–237Google Scholar
  17. Hughes EJ, Shapiro MK, Houghton JE, Ornston LN (1988) Cloning and expression of pca genes from Pseudomonas putida in Escherichia coli. J Gen Microbiol 134: 2877–2887Google Scholar
  18. Johnston AWB, Beringer JE (1975) Identification of the Rhizobium strains in pea root nodules using genetic markers. J Gen Microbiol 87: 343–350Google Scholar
  19. Johnston AWB, Beringer JE (1977) Chromosomal recombination between Rhizobium species. Nature 267: 611–613Google Scholar
  20. Kemp MB, Hegeman GD (1968) Genetic control of the β-ketoadipate pathway in Pseudomonas aeruginosa. J Bacteriol 96: 1488–1499Google Scholar
  21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurements with the Folin phenol reagent. J Biol Chem 193: 265–275Google Scholar
  22. Parke D, Ornston LN (1976) Constitutive synthesis of enzymes of the protocatechuate pathway and of the β-ketoadipate uptake system in mutant strains of Pseudomonas putida. J Bacteriol 126: 272–281Google Scholar
  23. Parke D, Ornston LN (1986) Enzymes of the β-ketoadipate pathway are inducible in Rhizobium and Agrobacterium spp. and constitutive in Bradyrhizobium spp. J Bacteriol 165: 288–292Google Scholar
  24. Parke D, Rynne F, Glenn AR (1991) Regulation of genes for phenolic catabolism in Rhizobium leguminosarum biovar trifolii J Bacteriol (in press)Google Scholar
  25. Rosendahl L, Glenn AR, Dilworth MJ (1991) Organic and inorganic inputs into legume root nodule nitrogen fixation. In: Dilworth MJ, Glenn AR (eds) Biology and biochemistry of nitrogen fixation. Elsevier, Amsterdam, pp 259–291Google Scholar
  26. Stanier RY, Ornston LN (1973) The β-ketoadipate pathway. In: Rose AH, Tempest DW (eds) Advances in microbial physiology, vol. 9. Academic Press, London, pp 89–149Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • C. M. Wong
    • 1
  • M. J. Dilworth
    • 1
  • A. R. Glenn
    • 1
  1. 1.Nitrogen Fixation Research Group, School of Biological and Environmental SciencesMurdoch UniversityMurdochAustralia

Personalised recommendations