Advertisement

Archives of Microbiology

, Volume 155, Issue 2, pp 177–182 | Cite as

Growth of Wolinella succinogenes with polysulphide as terminal acceptor of phosphorylative electron transport

  • Oliver Klimmek
  • Achim Kröger
  • Ralf Steudel
  • Gabriele Holdt
Original Papers

Abstract

Polysulphide was formed according to reaction (1), when tetrathionate was
$${\text{S}}_4 {\text{O}}_6^{2 - } + {\text{HS}}^ - \to 2{\text{S}}_2 {\text{O}}_3^{2 - } + {\text{S(O)}} + {\text{H}}^ + $$
(1)
added to an anaerobic buffer (pH 8.5) containing excess sulphide. S(O) denotes the zero oxidation state sulphur in the polysulphide mixture S infn sup2- . The addition of formate to the polysulphide solution in the presence of Wolinella succinogenes caused the reduction of polysulphide according to reaction (2). The bacteria grew in a medium containing formate and sulphide,
$${\text{HCO}}_2^ - + {\text{S(O)}} + {\text{H}}2{\text{O}} \to {\text{HCO}}_3^ - + {\text{HS}}^ - + {\text{H}}^ + $$
(2)
when tetrathionate was continuously added. The cell density increased proportional to reaction (3) which represents the sum of reactions (1) and
$${\text{HCO}}_2^ - + {\text{S}}_{\text{4}} {\text{O}}_6^{2 - } + {\text{H}}2{\text{O}} \to {\text{HCO}}_3^ - + 2{\text{S}}_{\text{2}} {\text{O}}_3^{2 - } + 2{\text{H}}^ + $$
(3)
(2). The cell yield per mol formate was nearly the same as during growth on formate and elemental sulphur, while the velocity of growth was greater. The specific activities of polysulphide reduction by formate measured with bacteria grown with tetrathionate or with elemental sulphur were consistent with the growth parameters. The results suggest that W. succinogenes grow at the expense of formate oxidation by polysulphide and that polysulphide is an intermediate during growth on formate and elemental sulphur.

Key words

Sulphur respiration Polysulphide Electron transport Wolinella succinogenes 

Abbreviations

S(O)

zero oxidation state sulphur in polysulphides

Tris/HCl

2-amino-2-hydroxymethyl-1,3-propanediol, pH adjusted by HCl addition

ε

extinction coefficient

A

absorbance

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BergmeyerHU (1974) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim, pp 1596–1600Google Scholar
  2. BodeC, GoebellH, StählerE (1968) Zur Eliminierung von Trübungsfehlern bei der Eiweißbestimmung mit der Biuretmethode. Z Klin Chem Klin Biochem 6:419–422Google Scholar
  3. BoulegueJ, MichardG (1978) Constantes de formation des ions polysulfures Sinf6sup2-, Sinf5sup2- et Sinf4sup2- en phase aqueuse. J Franc d'Hydrol 9(25):27–34CrossRefGoogle Scholar
  4. BronderM, MellH, StupperichE, KrögerA (1982) Biosynthetic pathways of Vibrio succinogenes growing with fumarate as terminal electron acceptor and sole carbon source. Arch Microbiol 131:216–223CrossRefGoogle Scholar
  5. CockeP (1963) The distribution of ionic species in aqueous sodium polysulfide solutions. Geochim Cosmochim Acta 27:1265–1298CrossRefGoogle Scholar
  6. DavisRE (1964) Nucleophilic displacement reactions at the sulfursulfur bond. Surr Prog Chem 2:189–238CrossRefGoogle Scholar
  7. GerischerH (1949) Über die Auflösungsgeschwindigkeit von Schwefel in Sulfid und Polysulfidlösungen. Z Anorg Chem 259:220–224CrossRefGoogle Scholar
  8. GiggenbachW (1972) Optical spectra and equilibrium distribution of polysulfide ions in aqueous solutions at 20°. Inorg Chem 11:1201–1207CrossRefGoogle Scholar
  9. Göbel T (1988) Synthesen und Analysen von kettenförmigen Polyschwefelverbindungen: Modelluntersuchungen zum Stoffwechsel der Schwefelbakterien. Doctoral Thesis, Technische Universität BerlinGoogle Scholar
  10. HansenCJ (1933) Die Einwirkung von Schwefelwasserstoff und Sulfiden auf Polythionate. Chem Ber 66:817–825CrossRefGoogle Scholar
  11. KrögerA, WinklerE, InnerhoferA, HackenbergH, SchäggerH (1979) The formate dehydrogenase involved in electron transport from formate to fumarate in Vibrio succinogenes. Eur J Biochem 94:465–475CrossRefGoogle Scholar
  12. KurtenackerA, GoldbachE (1927) Über die Analyse von Polythionatlösungen. Z Anorg Allg Chem 116:177–189CrossRefGoogle Scholar
  13. LowryO, RosebroughHJ, FarrAL, RandallRJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  14. MacyJM, SchröderI, ThauerRK, KrögerA (1986) Growth of Wolinella succinogenes on H2S plus fumarate and on formate plus sulfur as energy sources. Arch Microbiol 144:147–150CrossRefGoogle Scholar
  15. PfennigN, TrüperHG (1981) Isolation of members of the families Chromatiaceae and Chlorobiaceae. In: StarrMP, StolpH, TrüperHG, BalousA, SchlegelHG (eds) The prokaryotes, vol 1. Springer, Berlin Heidelberg New York, pp 279–289CrossRefGoogle Scholar
  16. SchröderI, KrögerA, MacyJM (1988) Isolation of the sulphur reductase and reconstitution of the sulphur respiration of Wolinella succinogenes. Arch Microbiol 149:572–579CrossRefGoogle Scholar
  17. SchwarzenbachG, FischerA (1960) Die Acidität der Sulfane und die Zusammensetzung wässriger Polysulfidlösungen. Helv Chim Acta 43:1365–1389CrossRefGoogle Scholar
  18. SteudelR, HoldtG (1986) Ion-pair chromatographic separation of polythionates with up to thirteen sulphur atoms. J Chromatogr 361:379–384CrossRefGoogle Scholar
  19. SteudelR, HoldtG, GöbelT (1989) Ion-pair chromatographic separation of inorganic sulphur anions including polysulphide. J Chromatogr 475:442–446CrossRefGoogle Scholar
  20. TederA (1971) The equilibrium between elementary sulfur and aqueous polysulfide solutions. Acta Chem Scand 25:1722–1728CrossRefGoogle Scholar
  21. WloczykC, KrögerA, GöbelT, HoldtG, SteudelR (1989) The electrochemical proton potential generated by the sulphur respiration of Wolinella succinogenes. Arch Microbiol 152:600–605CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Oliver Klimmek
    • 1
  • Achim Kröger
    • 1
  • Ralf Steudel
    • 2
  • Gabriele Holdt
    • 2
  1. 1.Institut für Mikrobiologie der J. W. Goethe-Universität Frankfurt am MainFrankfurt am MainGermany
  2. 2.Institut für Anorganische und Analytische ChemieTechnische Universität BerlinBerlin 12Germany

Personalised recommendations