Archives of Microbiology

, Volume 155, Issue 2, pp 170–176 | Cite as

Thiocapsa halophila sp. nov., a new halophilic phototrophic purple sulfur bacterium

  • Pierre Caumette
  • Renée Baulaigue
  • Robert Matheron
Original Papers


A new phototrophic sulfur bacterium has been isolated from a red layer in a laminated mat occurring underneath a gypsum crust in the mediterranean salterns of Salin-de-Giraud (Camargue, France). Single cells were coccus-shaped, non motile, without gas vacuoles and contained sulfur globules. Bacteriochlorophyll a and okenone were present as major photosynthetic pigments. These properties and the G+C content of DNA (65.9–66.6 mol% G+C) are typical characteristics of the genus Thiocapsa. However, the new isolate differs from known species in the genus, particularly in NaCl requirement (optimum, 7% NaCl; range, 3–20% NaCl) and some physiological characteristics. Therefore, a new species is proposed, Thiocapsa halophila, sp. nov.

Key words

Chromatiaceae Thiocapsa Okenone Hypersaline environment Halophilic bacteria Microbial mats 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. CaumetteP (1986) Phototrophic sulfur bacteria and sulfate reducing bacteria causing red waters in a shallow brackish coastal lagoon (Prevost Lagoon, France). FEMS Microbiol Ecol 38:113–124Google Scholar
  2. CaumetteP, BaulaigueR, MatheronR (1988) Characterization of Chromatium salexigens sp. nov, a halophilic Chromatiaceae isolated from Mediterranean Salinas. System Appl Microbiol 10:284–292CrossRefGoogle Scholar
  3. CaumetteP, SchmidtK, BieblH, PfennigN (1985) Characterization of a Thiocapsa strain containing okenone as major carotenoid. System Appl Microbiol 6:132–136CrossRefGoogle Scholar
  4. ClineJD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458CrossRefGoogle Scholar
  5. CornéeA (1983) Sur les bactéries des saumures et des sédiments de marais salants méditerranéens. Importance et rôle sédimentologique. Laboratoire de Géologie du Muséum, ParisGoogle Scholar
  6. EichlerB, PfennigN (1986) Characterization of a new plateletforming purple bacterium, Amoebobacter pedioformis sp. nov. Arch Microbiol 146:295–300CrossRefGoogle Scholar
  7. GerdesG, KrumbeinWE, HoltkampE (1985) Salinity and water activity related zonation of microbial communities and potential stromatolites of the Gavish Sabkha. In: FriedmanGM, KrumbeinWE (eds) Hypersaline ecosystems, the Gavish Sabkha. Springer, Berlin Heidelberg New York, pp 238–266CrossRefGoogle Scholar
  8. GianiD, SeelerJ, GianiL, KrumbeinWE (1989) Microbial mats and physicochemistry in a saltern in the Bretagne (France) and in a laboratory scale saltern model. FEMS Microbiol Ecol 62:151–162CrossRefGoogle Scholar
  9. GlazerAN, Cohen-BazireG, StanierRY (1971) Characterization of phycoerythrin from a Cryptomonas species. Arch Microbiol 80:1–18Google Scholar
  10. ImhoffJF (1988) Halophilic phototrophic bacteria. In: Rodriguez-ValeraF (ed) Halophilic bacteria, vol 1. CRC Press, Boca Raton, FL, pp 85–108Google Scholar
  11. JørgensenBB, FenchelT (1974) The sulfur cycle of a marine sediment model system. Mar Biol 24:189–201CrossRefGoogle Scholar
  12. KämpfC, PfennigN (1980) Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum. Arch Microbiol 127:125–130CrossRefGoogle Scholar
  13. MatheronR, BaulaigueR (1972) Bactéries photosynthétiques sulfureuses marines: assimilation des substances organiques et minérales et influence de la teneur en chlorure de sodium sur leur développement. Arch Microbiol 86:291–304Google Scholar
  14. NicholsonJAN, StolzJF, PiersonBK (1987) Structure of a mat at Great Sippewissett Marsh, Cape Cod, Massachusetts. FEMS Microbiol Ecol 45:343–364CrossRefGoogle Scholar
  15. PfennigN, TrüperHG (1981) Isolation of members of the families Chromatiaceae and Chlorobiaceae. In: StarrMP, StolpH, TrüperHG, BalowsA, SchlegelHG (eds) The prokaryotes, vol 1. Springer, Berlin Heidelberg New York, pp 279–289CrossRefGoogle Scholar
  16. PfennigN, TrüperHG (1989) Anoxygenic phototrophic bacteria. In: StaleyJT, BryantMP, PfennigN, HoltJG (eds) Bergey's manual of systematic bacteriology, vol 3. Williams & Wilkins, Baltimore, pp 1635–1709Google Scholar
  17. PfennigN, WagenerS (1986) An improved method of preparing wet mounts for photomicrographs of microorganisms. J Microbiol Methods 4:303–306CrossRefGoogle Scholar
  18. PfennigN, WiddelF, TrüperHG (1981) The dissimilatory sulfatereducing bacteria. In: StarrMP, StolpH, TrüperHG, BalowsA, SchlegelHG (eds) The prokaryotes, vol 1. Springer, Berlin Heidelberg New York, pp 926–940CrossRefGoogle Scholar
  19. Rodriguez-ValeraF, VentosaA, JuezG, ImhoffJF (1985) Variation of environmental features and microbial populations with salt concentrations in a multi-pond saltern. Microbiol Ecol 11: 107–115CrossRefGoogle Scholar
  20. RyterA, KellenbergerE (1958) Etude au microscope électronique de plasmas contenant de l'acide désoxyribonucléique. I. Les mucléoides des bactéries en croissance active. Z Naturforsch 13b:597–605CrossRefGoogle Scholar
  21. StalLJ, vanGemerdenH, KrumbeinWE (1985) Structure and development of a benthic marine microbial mat. FEMS Microbiol Ecol 31:111–125CrossRefGoogle Scholar
  22. TrüperHG, GalinskiEA (1986) Concentrated brines as habitats for microorganisms. Experientia 42:1182–1187CrossRefGoogle Scholar
  23. VanGemerdenH, deWitR, TughanCS, HerbertRA (1989) Development of mass blooms of Thiocapsa roseopersicina on sheltered beaches on the Orkney Islands. FEMS Microbiol Ecol 62:111–118CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Pierre Caumette
    • 1
  • Renée Baulaigue
    • 2
  • Robert Matheron
    • 2
  1. 1.Institut de Biologie MarineArcachonFrance
  2. 2.Laboratoire de MicrobiologieFaculté des Sciences et Techniques de Saint-JérômeMarseille Cedex 13France

Personalised recommendations