Advertisement

Archives of Microbiology

, Volume 155, Issue 2, pp 120–124 | Cite as

Fermentation of cinnamate by a mesophilic strict anaerobe, Acetivibrio multivorans sp. nov.

  • Kazuhiro Tanaka
  • Kazunori Nakamura
  • Eiichi Mikami
Original Papers

Abstract

A cinnamate-fermenting bacterium (strain PeC1) was isolated in pure culture from anoxic sludge of an oil refinery wastewater treatment facility. It was a mesophilic gram-negative non-sporing actively motile rod. It did not reduce nitrate, sulfte, or other sulfur compounds as electron acceptors. It fermented cinnamate to 3-phenylpropionate, benzoate, and acetate; crotonate to butyrate and acetate; pyruvate to lactate and acetate; acetoin to ethanol and acetate; and carbohydrates to ethanol, formate, and acetate. The DNA base ratio of the strain was 44 mol% guanine plus cytosine. It is described as a new species of the genus Acetivibrio, A. multivorans sp. nov.

Key words

Acetivibrio Anaerobic Gram-negative Non-spore-former Degradation Fermentation Cinnamate 3-Phenylpropionate Acethate Ethanol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BryantMP (1972) Commentary on Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr 25:1324–1328CrossRefGoogle Scholar
  2. CataldoDA, HaroonM, SchraderLE, YoungVL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 6:71–80CrossRefGoogle Scholar
  3. ClineE (1969) Spectrophotometric determination of hydrogensulfide in natural waters. Limnol Oceanogr 14:454–458CrossRefGoogle Scholar
  4. DehningI, SchinkB (1989) Malonomonas rubra gen. nov. sp. nov., a microaerotolerant anaerobic bacterium growing by decarboxylation of malonate. Arch Microbiol 151:427–433CrossRefGoogle Scholar
  5. DeWeerdKM, MandelcoL, TannerRS, WoeseCR, SuflitaJM (1990) Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Arch Microbiol 154:23–30Google Scholar
  6. ElsdenSR, HiltonMG, WallerJM (1976) The end products of the metabolism of aromatic amino acids by clostridia. Arch Microbiol 107:283–288CrossRefGoogle Scholar
  7. HoskinsJK (1934) Most probable numbers for evaluation of coliaerogenes tests by fermentation tube method. Public Health Rep Washington 49:393–405CrossRefGoogle Scholar
  8. KlempsR, CypionkaH, WiddelF, PfennigN (1985) Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species. Arch Microbiol 143:203–208CrossRefGoogle Scholar
  9. MadiganMT, GestH (1988) Selective enrichment and isolation of Rhodopseudomonas palustris using trans-cnnamic acid as sole carbon source. FEMS Microbiol Ecol 43:53–58CrossRefGoogle Scholar
  10. MageeCM, RodeheaverG, EdgertonRF (1975) A more reliable Gram staining technique for diagnosis of surgical infections. Am J Surg 130:341–346CrossRefGoogle Scholar
  11. MossCW, LambertMA, GoldsmithDJ (1970) Production of hydrocinnamic acid by clostridia. Appl Microbiol 19:375–378PubMedPubMedCentralGoogle Scholar
  12. PatelGB, KhanAW, AgnewBJ, ColvinJR (1980) Isolation and characterization of an anaerobic, cellulolytic microorganism, Acetivibrio cellulolyticus gen. nov., sp. nov. Int J Syst Bacteriol 30:179–185CrossRefGoogle Scholar
  13. PfennigN (1978) Rhodococcus purpureus gen. nov. and sp. nov., a ringshaped vitamin B12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol 28:283–288CrossRefGoogle Scholar
  14. RobinsonLM, RitchieAE (1981) Emendation of Acetivibrio and description of Acetivibrio ethanolgignens, a new species from the colons of pigs with dysentery. Int J Syst Bacteriol 31:333–338CrossRefGoogle Scholar
  15. SchinkB, StiebM (1983) Fermentative degradation of polyethylene glycol by a strictly anaerobic, Gram-negative, nonsporeforming bacterium, Pelobacter venetianus sp. nov. Appl Environ Microbiol 45:1905–1913PubMedPubMedCentralGoogle Scholar
  16. SeitzH-J, CypionkaH (1986) Chemolithotrophic growth of Desulfovibrio desulfuricans with hydrogen coupled to ammonification of nitrate or nitrite. Arch Microbiol 146:63–67CrossRefGoogle Scholar
  17. StiebM, SchinkB (1984) A new 3-hydroxybutyrate fermenting anaerobe, Ilyobacter polytropus, gen. nov. sp. nov., possessing various fermentation pathways. Arch Microbiol 140:139–146CrossRefGoogle Scholar
  18. TamaokaJ, KomagataK (1984) Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128CrossRefGoogle Scholar
  19. TanakaK, PfennigN (1988) Fermentation of 2-methoxyethanol by Acetobacterium malicum sp. nov. and Pelobacter venetianus. Arch Microbiol 149:181–187CrossRefGoogle Scholar
  20. TanakaK, NakamuraK, MikamiE (1990) Fermentation of maleate by a gram-negative strictly anaerobic non-spore-former, Propionivibrio dicarboxylicus gen. nov., sp. nov. Arch Microbiol 154:323–328CrossRefGoogle Scholar
  21. TschechA, PfennigN (1984) Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch Microbiol 137:163–167CrossRefGoogle Scholar
  22. WiddelF, PfennigN (1981) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 129:395–400CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Kazuhiro Tanaka
    • 1
  • Kazunori Nakamura
    • 1
  • Eiichi Mikami
    • 1
  1. 1.Fermentation Research InstituteTsukuba, IbarakiJapan

Personalised recommendations