Advertisement

Archive for Rational Mechanics and Analysis

, Volume 16, Issue 1, pp 51–78 | Cite as

Micro-structure in linear elasticity

  • R. D. Mindlin
Article

Keywords

Neural Network Complex System Nonlinear Dynamics Electromagnetism Linear Elasticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ericksen, J. L., & C. Truesdell, Exact theory of stress and strain in rods and shells. Arch. Rational Mech. Anal. 1, 295–323 (1958).Google Scholar
  2. [2]
    Cosserat, E. Cosserat F., Théorie des Corps Déformables. Paris: A. Hermann & Fils 1909. For the linear, two-dimensional theory, with applications, see H. Schaefer, Versuch einer Elastizitätstheorie des Zweidimensionalen ebenen Cosserat-Kontinuums. Miszellaneen der Angewandten Mechanik, pp. 277–292. Berlin: Akademie-Verlag 1962.Google Scholar
  3. [3]
    Jeffreys, H., & Jeffreys B. S., Methods of Mathematical Physics, Second Edition. Cambridge: University Press 1950.Google Scholar
  4. [4]
    Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity, Fourth Edition. Cambridge: University Press 1927.Google Scholar
  5. [5]
    Grioli, G., Elasticità asimmetrica. Ann. di Mat. pura ed appl., Ser. IV 50, 389–417 (1960).Google Scholar
  6. [6]
    Aero, E. L., & E. V. Kuvshinskii, Fundamental equations of the theory of elastic media with rotationally interacting particles. Fizika Tverdogo Tela 2, 1399–1409 (1960); Translation: Soviet Physics Solid State 2, 1272–1281 (1961).Google Scholar
  7. [7]
    Rajagopal, E. S., The existence of interfacial couples in infinitesimal elasticity. Ann. der Physik 6, 192–201 (1960).Google Scholar
  8. [8]
    Toupin, R. A., Elastic materials with couple-stresses. Arch. Rational Mech. Anal. 11, 385–414 (1962).Google Scholar
  9. [9]
    Mindlin, R. D., & H. F. Tiersten, Effects of couple-stresses in linear elasticity. Arch. Rational Mech. Anal. 11, 415–448 (1962).Google Scholar
  10. [10]
    Mindlin, R. D., Influence of couple-stresses on stress-concentrations. Experimental Mechanics 3, 1–7 (1963).Google Scholar
  11. [11]
    Mindlin, R. D., & M. A. Medick, Extensional vibrations of elastic plates. J. Appl. Mech. 26, 561–569 (1959).Google Scholar
  12. [12]
    Gazis, D. C., & R. F. Wallis, Extensional waves in cubic crystal plates. Proc. 4th U.S.Nat. Cong. Appl. Mech., 161–168 (1962).Google Scholar
  13. [13]
    Mindlin, R. D., High frequency vibrations of plated, crystal plates. Progress in Applied Mechanics, pp. 73–84. New York: Macmillan Co. 1963.Google Scholar
  14. [14]
    Gazis, D. C., & R. F. Wallis, Surface vibrational modes in crystal lattices with complex interatomic interactions. J. Math. Phys. 3, 190–199 (1962).Google Scholar
  15. [15]
    Brockhouse, B. N., & P. K. Iyengar, Normal modes of germanium by neutron spectroscopy. Phys. Rev. 111, 747–754 (1958).Google Scholar
  16. [16]
    Mindlin, R. D., Thickness-shear and flexural vibrations of crystal plates. J. Appl. Phys. 22, 316–323 (1951).Google Scholar
  17. [17]
    Mindlin, R. D., High frequency vibrations of crystal plates. Q. Appl. Math. 19, 51–61 (1961).Google Scholar
  18. [18]
    Kane, T. R., & R. D. Mindlin, High frequency extensional vibrations of plates. J. Appl. Mech. 23, 277–283 (1956).Google Scholar
  19. [19]
    Mindlin, R. D., Influence of rotatory inertia and shear on flexural vibrations of isotropic, elastic plates. J. Appl. Mech. 18, 31–38 (1951).Google Scholar
  20. [20]
    Jaramillo, T. J., A generalization of the energy function of elasticity theory. Dissertation, Department of Mathematics, University of Chicago, 1929.Google Scholar
  21. [21]
    Mindlin, R. D., Force at a point in the interior of a semi-infinite solid. Proc. First Midwestern Conf. on Solid Mech., Urbana, Illinois, 56–59 (1953).Google Scholar
  22. [22]
    Papkovitch, P. F., The representation of the general integral of the fundamental equations of elasticity theory in terms of harmonic functions. Izv. Akad. Nauk SSSR, Phys.-Math. Ser. 10, 1425 (1932).Google Scholar
  23. [23]
    Mindlin, R. D., Note on the Galerkin and Papkovitch stress functions. Bull. Amer. Math. Soc. 42, 373–376 (1936).Google Scholar

Copyright information

© Springer-Verlag 1964

Authors and Affiliations

  • R. D. Mindlin
    • 1
  1. 1.Department of Civil EngineeringColumbia UniversityNew York

Personalised recommendations