Advertisement

A fast computational algorithm for the Legendre-Fenchel transform

  • Y. Lucet
Article

Abstract

We investigate a fast algorithm, introduced by Brenier, which computes the Legendre-Fenchel transform of a real-valued function. We generalize his work to boxed domains and introduce a parameter in order to build an iterative algorithm. The new approach of separating primal and dual spaces allows a clearer understanding of the algorithm and yields better numerical behavior. We extend known complexity results and give new ones about the convergence of the algorithm.

Keywords

Legendre-Fenchel transform conjugate biconjugate complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Brenier Un algorithme rapide pour le calcul de transforme de Legendre-Fenchel discrtes C.R.Acad.Sci.Paris,t.308, Srie I,p587–589,1989Google Scholar
  2. 2.
    B. Brighi and M. Chipot Approximated convex envelope of a function. Siam J.Num.Anal., Vol 31, N.1, pp128–148, 1994Google Scholar
  3. 3.
    L. Corrias Fast Legendre-Fenchel Transform and applications to Hamilton-Jacobi equation and conservation laws. Publication du laboratoire d'analyse numrique. Universit Pierre et Marie Curie, juim 1994Google Scholar
  4. 4.
    R. Dautray and J.-L. Lions Analyse mathmatique et calcul numrique pour les sciences et les techniques. Masson 2nd dition. Tome 3, p865–875, 1987Google Scholar
  5. 5.
    J.-B. Hiriart-Urruty Lipschitz r-continuity of the approximate subdifferential of a convex function. Math. Scand. 47. p123–134, 1980Google Scholar
  6. 6.
    J.-B. Hiriart-Urruty and C. Lemarchal Convex analysis and minimization algorithms. Springer-Verlag, 1993Google Scholar
  7. 7.
    D.G. Luenberger Linear and Nonlinear Progamming. Addison-Wesley 2nd edition, p189–193, 1984Google Scholar
  8. 8.
    K.I.M. McKinnon, C.G. Millas and M. Mongeau Global optimization for the chemical and phase equilibrium problem using interval analysis. Technical report LAO95-02, January 1995Google Scholar
  9. 9.
    V.P. Maslov On a new principle of superposition for optimization problems. Russian Math. Surveys 42:3,p43–54, 1987Google Scholar
  10. 10.
    J.-P. Quadrat Thorme asymptotique en programmation dynamique. C.R.Acad.Sci.Paris,t. 311, Srie I,p745–748, 1990Google Scholar
  11. 11.
    R.T. Rockafellar Convex Analysis. Princeton university Press, Princeton, New york, 1970Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Y. Lucet
    • 1
  1. 1.Laboratoire Approximation et Optimisation, UFR MIGUniversité Paul SabatierToulouse CedexFrance

Personalised recommendations