Advertisement

Archives of Microbiology

, Volume 153, Issue 2, pp 205–207 | Cite as

Thermococcus litoralis sp. nov.: A new species of extremely thermophilic marine archaebacteria

  • Annemarie Neuner
  • Holger W. Jannasch
  • Shimshon Belkin
  • Karl. O. Stetter
Short Communication

Abstract

We describe a new species, Thermococcus litoralis, which is different from the type species Thermococcus celer in molecular, morphological and physiological characteristics.

Key words

Archaebacteria Extreme thermophile Pyrococcus Thermococcus 

Abbreviations

3 x SSC

(standard saline citrate)

0.45 M NaCl

0.045 M Na3-citrate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achenbach-Richter L, Gupta R, Zillig W, Woese CR (1988) Rooting the archaebacterial tree: The pivotal role of Thermococcus celer in archaebacterial evolution. Syst Appl Microbiol 10:231–240Google Scholar
  2. Aiba H, Adhya S, deCrombrugghe B (1981) Evidence for two functional gal promotors in intact E. coli cells. J Biol Chem 256:11905–11910Google Scholar
  3. Belkin S, Jannasch HW (1985) A new extremely thermophilic sulfur reducing heterotrophic marine bacterium. Arch Microbiol 142:181–186Google Scholar
  4. Brenner DJ (1873) Deoxyribonucleic acid reassociation in the taxonomy of enteric bacteria. Int J Syst Bacteriol 22:298–307Google Scholar
  5. Birnstiel ML, Sells BH, Purdom JF (1972) Kinetic complexity of RNA molecules. J Mol Biol 63:21–39Google Scholar
  6. Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria grwoing optimally at 100°C. Arch Microbiol 145:56–61Google Scholar
  7. Gillespie S, Gillespie D (1971) Ribonucleic acid-deoxyribonucleic acid hybridization in aqueous solutions and in solutions containing formamide. Biochem J 125:481–487Google Scholar
  8. Kelly RB, Cozzarelli NR, Deutscher MP, Lehman JR, Kornberg A (1970) Enzymatic synthesis of deoxyribonucleic acid. XXXII. Replication of duplex deoxyribonucleic acid by polymerase at a single strand break. J Biol Chem 245:39–45Google Scholar
  9. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82:6955–6959Google Scholar
  10. Laurer G, Kristjansson JK, Langworthy TA, König H, Stetter KO (1986) Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97°C. Syst Appl Microbiol 8:100–105Google Scholar
  11. Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118Google Scholar
  12. Stetter KO, Zillig W (1985) Thermoplasma and the thermophilic sulfur-dependent archaebacteria. In: Wolfe RS, Woese CR (eds) The bacteria, vol XIII, chapt 2. Academic Press, Orlando, pp 86–165Google Scholar
  13. Zilig W, Stetter KO, Wunderl S, Schulz W, Priess H, Scholz I (1980) The Sulfolobus — “Caldariella” group: Taxonomy on the basis of the structure of DNA-dependent RNA polymerase. Arch Microbiol 125:259–269Google Scholar
  14. Zillig W, Holz I, Janekovic D, Schäfer W, Reiter WD (1983) The archaebacterium Thermococcus celer represents a novel genus within the thermophilic branch of the archaebacteria. Syst Appl Microbiol 4:88–94Google Scholar
  15. Zillig W, Holz I, Klenk HP, Trent J, Windl S, Janekovic D, Imsel E, Haas B (1987) Pyrococcus woesei, sp. nov., an ultrathermophilic marine archaebacterium, representing a novel order. Syst Appl Microbiol 9:67–70Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Annemarie Neuner
    • 1
  • Holger W. Jannasch
    • 2
  • Shimshon Belkin
    • 3
  • Karl. O. Stetter
    • 1
  1. 1.Lehrstuhl für MikrobiologieUniversität RegensburgRegensburgFederal Republic of Germany
  2. 2.Department of BiologyWoods Hole Oceanographic InstitutionWoods HoleUSA
  3. 3.Ben Gurion University of the NegevIsrael

Personalised recommendations