Advertisement

Archives of Microbiology

, Volume 153, Issue 2, pp 200–204 | Cite as

Fermentation of methoxyacetate to glycolate and acetate by newly isolated strains of Acetobacterium sp.

  • Beate Schuppert
  • Bernhard Schink
Original Papers

Abstract

Three strains of new mesophilic homoacetogenic bacteria were enriched and isolated from sewage sludge and from marine sediment samples with methoxyacetate as sole organic substrate in a carbonate-buffered medium under anoxic conditions. Two freshwater isolates were motile, Gram-positive, non-sporeforming rods. The marine strain was an immotile, Gram-positive rod with a slime capsula. All strains utilized only the methyl residue of methoxyacetate and released glycolic acid. They also fermented methyl groups of methoxylated aromatic compounds and of betaine to acetate with growth yields of 6–10 g dry matter per mol methyl group. H2/CO2, formate, methanol, hexamethylene tetramine, as well as fructose, numerous organic acids, glycerol, ethylene glycol, and glycol ethers were fermented to acetate as well. High activities of carbon monoxide dehydrogenase (0.4–2.2 U x mg protein−1) were detected in all three isolates. The guanine-plus-cytosine-content of the DNA of the freshwater isolates was 42.7 and 44.4 mol %, with the marine isolate it was 47.7 mol %. The freshwater strains were assigned to the genus Acetobacterium as new strains of the species A. carbinolicum. One freshwater isolate, strain KoMac1, was deposited with the Deutsche Sammlung von Mikroorganismen GmbH, Braunschweig, under the number DSM 5193.

Key words

Anaerobic ether cleavage Methoxyacetate 2-Mcthoxyethanol Demethylation Homoacetogenic bacteria Acetobacterium sp. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axelrod J (1956) The enzymic cleavage of aromatic ethers. Biochem J 63:634–639Google Scholar
  2. Bache R, Pfennig N (1981) Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch Microbiol 130:255–261Google Scholar
  3. Bernhardt F-H, Staudinger H, Ulrich V (1970) Eigenschaften einer p-Anisat-O-Demethylase im zellfreien Extrakt von Pseudomonas species. Hoppe-Seyler's Z Physiol Chem 351:467–478Google Scholar
  4. Cartwright NJ, Smith ARW (1967) Bacterial attack on phenolic ethers. An enzyme system demethylating vanillic acid. Biochem J 102:826–841Google Scholar
  5. Cline JD (1969) Spectrometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458Google Scholar
  6. Dehning I, Schink B (1989) Malonomonas rubra gen. nov. sp. nov., a microaerotolerant anaerobic bacterium growing by decarboxylation of malonate. Arch Microbiol 151:427–433Google Scholar
  7. DeWeerd KA, Saxena A, Nagle DP, Suflita JM (1988) Metabolism of the 18O methoxy substituent of 3-methoxybenzoic acid and other unlabelled methoxybenzoic acids by anaerobic bacteria. Appl Environ Microbiol 54:1237–1242Google Scholar
  8. Diekert GB, Thauer RK (1978) Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum. J Bacteriol 136:597–606Google Scholar
  9. Dimroth K (1983) Inkremente zur Berechnung der Bildungsenthalpien und der freien Bildungsenthalpien. In: D'Ans Lax Taschenbuch für Chemiker und Physiker. Bd. 2, Organische Verbindunge. 4. ed. Springer, Berlin Heidelberg New York, pp 997–1006Google Scholar
  10. Dwyer DF, Tiedje JM (1986) Metabolism of polyethylene glycol by two anaerobic bacteria, a Desulfovibrio desulfuricans and a Bacteroides sp. Appl Environ Microbiol 52:852–856Google Scholar
  11. Eichler B, Schink B (1984) Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum, a homoacetogenic anaerobe. Arch Microbiol 140:147–152Google Scholar
  12. Emde R, Schink B (1987) Fermentation of triacetin and glycerol by Acetobacterium sp. No energy is conserved by acetate excretion. Arch Microbiol 149:145–148Google Scholar
  13. Frazer AC, Young LY (1985) A Gram-negative anaerobic bacterium that utilizes O-methyl substituents of aromatic acids. Appl Environ Microbiol 49:1345–1347Google Scholar
  14. Frazer AC, Young LY (1986) Anaerobic C1 metabolism of the O-methyl-14C-labeled substituent of vanillate. Appl Environ Microbiol 51:84–87Google Scholar
  15. Grbic-Galic D, LaPat-Polasko L (1985) Enterobacter cloacae DG-6: a strain that transforms methoxylated aromatics under aerobic and anaerobic conditions. Curr Microbiol 12:321–324Google Scholar
  16. Gregersen T (1978) Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127Google Scholar
  17. Heydeman MT (1974) Growth of soil bacteria on diethyl ether. J Gen Microbiol 81:IX-XGoogle Scholar
  18. Hollaus F, Sleytr V (1972) On the taxonomy and fine structure of some hyperthermophilic saccarolytic clostridia. Arch Mikrobiol 86:129–146Google Scholar
  19. Krumholtz LR, Bryant MP (1985) Clostridium pfennigii sp. nov. uses methoxyl groups of mono-benzenoids and produces butyrate. Int J Syst Bacteriol 35:454–456Google Scholar
  20. Magee CM, rodeheaver G, Edgerton MT, Edlich RF (1975) A more reliable Gram staining technic for diagnosis of surgical infections. Am J Surgery 130:341–346Google Scholar
  21. Mountfort DO, Asher RA (1986) Isolation from a methanogenic ferulate degrading consortium of an anaerobe that converts methoxyl groups of aromatic acids to volatile fatty acids. Arch Microbiol 144:55–61Google Scholar
  22. Müller E, Fahlbusch K, Walther R, Gottschalk G (1981) Formation of N,N-dimethylglycine, acetic acid, and butyric acid from betaine by Eubacterium limosum. Appl Environ Microbiol 42:439–445Google Scholar
  23. Pfennig N (1978) Rhodocyclus purpureus gen. nov. sp. nov., a ringshaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol 28:283–288Google Scholar
  24. Procházková L (1959) Bestimmung der Nitrate im Wasser. Z Anal Chem 167:254–260Google Scholar
  25. Schink B (1987) Ecology of C1-metabolizing anaerobes. In: vanVerseveld HW, Duine JA (eds) Microbial growth on C1 compounds. Martinus Nijhoff Dordrecht, The Netherlands, pp 81–85Google Scholar
  26. Schink B, Pfennig N (1982) Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov., a new strictly anaerobic, non-sporeforming bacterium. Arch Microbiol 133:195–201Google Scholar
  27. Schink B, Stieb M (1983) Fermentative degradation of polyethyleneglycol by a new, strictly anaerobic, Gram-negative, nonsporeforming bacterium, Pelobacter venetianus sp. nov. Appl Environ Microbiol 45:1905–1913Google Scholar
  28. Stra\ A, Schink B (1986) Fermentation of polyethylene glycol via acetaldehyde in Pelobacter venetianus. Appl Microbiol Biotechnol 25:37–42Google Scholar
  29. Sutherland JB (1986) Demethylation of veratrole by cytochrome P-450 in Streptomyces setonii. Appl Environ Microbiol 52:98–100Google Scholar
  30. Tanaka K, Pfennig N (1988) Fermentation of 2-methoxyethanol by Acetobacterium lalicum sp. nov. and Pelobacter venetianus. Arch Microbiol 149:181–187Google Scholar
  31. Tanaka K, Mikami E, Suzuki T (1986) Methane fermentation of 2-methoxyethanol by mesophilic digesting sludge. J Ferment Technol 64:305–309Google Scholar
  32. Taylor BF (1983) Aerobic and anaerobic catabolism of vanillic acid and some other methoxy-aromatic compounds by Pseudomonas sp. strain PN-1. Appl Environ Microbiol 46:1286–1292Google Scholar
  33. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180Google Scholar
  34. Tschech A, Pfennig N (1984) Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch Microbiol 137:163–167Google Scholar
  35. Widdel F, Pfennig N (1981) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov. sp. nov. Arch Microbiol 129:395–400Google Scholar
  36. Widdel F, Kohring GW, Mayer F (1983) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 134:286–294Google Scholar
  37. Zamenhoff S (1957) Preparation and assay of deoxyribonucleic acid from animal tissue. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 3. Academic Press, New York, pp 694–704Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Beate Schuppert
    • 1
  • Bernhard Schink
    • 1
  1. 1.Lehrstuhl Mikrobiologie I der Eberhard-Karls-UniversitätTübingenFederal Republic of Germany

Personalised recommendations