Archive for Rational Mechanics and Analysis

, Volume 51, Issue 2, pp 136–152 | Cite as

Bifurcations in the presence of a symmetry group

  • David Ruelle
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Brušlinskaya, N. N., Qualitative integration of a system of n differential equations in a region containing a singular point and a limit cycle. Dokl. Akad. Nauk SSSR 139 N 1, 9–12 (1961); Soviet Math. Dokl. 2, 845–848 (1961). MR 26 #5212; Errata MR 30, p. 1203Google Scholar
  2. 2.
    Chafee, N., The bifurcation of one or more closed orbits from an equilibrium point of an autonomous differential system. J. Differential Equations 4, 661–679 (1968).Google Scholar
  3. 3.
    Field, M., Equivariant dynamical systems. Bull. AMS 76, 1314–1318 (1970).Google Scholar
  4. 4.
    Hirsch, M., C. C. Pugh, & M. Shub, Invariant manifolds. Bull. AMS 76, 1015–1019 (1970).Google Scholar
  5. 5.
    Hirsch, M., C. C. Pugh, & M. Shub, Invariant manifolds. To appear.Google Scholar
  6. 6.
    Hopf, E., Abzweigung einer periodischen Lösung von einer stationären Lösung eines Differentialsystems. Ber. Math.-Phys. Kl. Sächs. Akad. Wiss. Leipzig 94, 1–22, (1942).Google Scholar
  7. 7.
    Jost, R., & E. Zehnder, A generalization of the Hopf bifurcation theorem. Helv. Phys. Acta. To appear.Google Scholar
  8. 8.
    Levinson, N., A second order differential equation with singular solutions. Ann. of Math. 50, 127–153 (1949).Google Scholar
  9. 9.
    Michel, L., Points critiques des fonctions invariantes sur une G-variété. C. R. Acad. Sc. Paris 272, 433–436 (1971).Google Scholar
  10. 10.
    Neimark, Ju. I., On some cases of dependence of periodic solutions on parameters. Dokl. Akad. Nauk SSSR 129 N4, 736–739 (1959). MR 24 # A 2101.Google Scholar
  11. 11.
    Riesz, F., & B. Sz.-Nagy, Leçons d'analyse fonctionnelle. 3e éd. Acad. Sci. Hongrie, 1955.Google Scholar
  12. 12.
    Ruelle, D., & F. Takens, On the nature of turbulence. Commun. Math. Phys. 20, 167–192 (1971).Google Scholar
  13. 13.
    Sacker, R. J., On invariant surfaces and bifurcation of periodic solutions of ordinary differential equations. NYU Thesis, 1964 (unpublished).Google Scholar
  14. 14.
    Siegel, C. L., Vorlesungen über Himmelsmechanik. Springer, Berlin-Göttingen-Heidelberg 1956.Google Scholar
  15. 15.
    Takens, F., Singularities of vector fields. Preprint.Google Scholar
  16. 16.
    Weyl, H., Classical groups. Princeton: University Press 1946.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • David Ruelle
    • 1
  1. 1.I.H.E.S.France

Personalised recommendations