Experimental Brain Research

, Volume 71, Issue 1, pp 153–162 | Cite as

Evidence for central entrainment of the medullary respiratory pattern by the locomotor pattern in the rabbit

  • L. Perségol
  • M. Jordan
  • D. Viala
  • C. Fernandez


1) Although periodic passive hindlimb movements can reproduce the enhancement of breathing frequency seen at the onset of muscular exercise, we have shown previously that they were unable to induce the 1∶1 coupling which is observed between locomotion and respiration during galloping in quadrupeds. The purpose of this study was to investigate the existence of a central coupling in two experimental situations: first, decorticate — DOPA, and secondly, decerebrate rabbit preparations. 2) After DOPA administration in curarized, vagotomized, decorticate animals, an absolute coordination could be observed between the locomotor bursts (which developed in hindlimb muscle nerves) and phrenic activity. With the temporal evolution of the pharmacological activation, the coupling mode varied from 1∶1 to 1∶2 during the same experiment with a loss of coordination between these two forms. When the coordination between both motor activities was not produced in such conditions, it could be induced for some imposed frequencies of periodic passive motions applied to the contralateral hindlimb. 3) When the DOPA effects were completely over, a rostro-pontine decerebration allowed locomotor activity to be released and a tight 1∶1 coupling could be obtained again between the two motor patterns in this new experimental situation. 4) An analysis of the data revealed that the various forms of coordination obtained in the different experimental situations are due to a central resetting of the respiratory and of the locomotor patterns. The capability of the hindlimb proprioceptive inputs to coordinate locomotor and respiratory patterns in the decorticate-DOPA preparation appeared simply linked to their ability to entrain the activity of the lumbar locomotion generator. It is suggested that these central reciprocal interactions, which have the properties of an entrainment process, are the result of interactions between the lumbar locomotion generator and the medullary respiratory one.

Key words

Locomotion Respiration Central entrainment Rabbit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson O, Grillner S (1981) Peripheral control of the cat's step cycle. Acta Physiol Scand 113: 89–101Google Scholar
  2. Asmussen E (1973) Ventilation at transition from rest to exercise. Acta Physiol Scand 89: 68–78Google Scholar
  3. Asmussen E, Nielsen M (1948) Studies on the initial changes in respiration at the transition from rest to work and from work to rest. Acta Physiol Scand 16: 270–285Google Scholar
  4. Bassal M, Bianchi AL (1981) Effets de la stimulation des structures nerveuses centrales sur les activités respiratoires efférentes chez le chat. I. Réponses à la stimulation corticale. J Physiol (Paris) 77: 741–757Google Scholar
  5. Bechbache RR, Duffin J (1977) The entrainment of breathing frequency by exercise rhythm. J Physiol (Lond) 272: 553–562Google Scholar
  6. Bertrand F, Hugelin A (1971) Respiratory synchronizing function of nucleus parabrachialis medialis: pneumotaxic mechanisms. J Neurophysiol 34: 189–207Google Scholar
  7. Bessou P, Dejours P, Laporte Y (1959) Action ventilatoire réflexe de fibres afférentes de grand diamètre, d'origine musculaire chez le chat. J Physiol (Paris) 51: 400–401Google Scholar
  8. Bramble DM, Carrier DR (1983) Running and breathing in mammals. Science 219: 251–256Google Scholar
  9. Buser P, Viala G, Chertok L, Fontaine G (1967) Inhibition of the “escape reaction” in rabbit: an analysis of the mechanism of hypnotic akinesia. In: Rusinov VS (ed) Comparatory problems of electrophysiology of the central nervous system. Moscow, pp 47–53Google Scholar
  10. Cohen MI (1979) Neurogenesis of respiratory rhythm in the mammal. Physiol Rev 59: 1105–1173Google Scholar
  11. Comroe J, Schmidt C (1943) Reflexes from the limb as a factor in the hyperpnea of muscular exercise. Am J Physiol 138: 536–547Google Scholar
  12. Dejours P (1959) La régulation de la ventilation au cours de l'exercice musculaire chez l'homme. J Physiol (Paris) 51: 163–261Google Scholar
  13. Dejours P (1964) Control of respiration in muscular exercise. In: Fenn WO, Rahn H (eds) Respiration. Washington, DC, American Physiological Society (Handbook of Physiology, Sect 3, Vol 1, pp 631–648)Google Scholar
  14. Dejours P, Bechtel-Labrousse Y, Lefrançois R, Raynaud J (1961) Etude de la mécanique ventilatoire au cours de l'exercice musculaire. J Physiol (Paris) 53: 318–319Google Scholar
  15. Dejours P, Raynaud J, Cuenod C, Labrousse Y (1955) Modifications instantanées de la ventilation au début et à l'arrêt de l'exercice musculaire. J Physiol (Paris) 47: 155–163Google Scholar
  16. Di Marco AF, Romaniuk JR, Von Euler C, Yamamoto Y (1983) Immediate changes in ventilation and respiratory pattern associated with onset and cessation of locomotion in the cat. J Physiol (Lond) 343: 1–16Google Scholar
  17. Eldridge FL, Millhorn DE, Kiley JP, Waldrop TG (1985) Stimulation by central command of locomotion, respiration and circulation during exercise. Resp Physiol 59: 313–337Google Scholar
  18. Feldman JL, Grillner S (1983) Control of vertebrate respiration and locomotion: a brief account. The Physiologist 26: 310–316Google Scholar
  19. Forssberg H, Grillner S (1973) The locomotion of the acute spinal cat injected with clonidine. Brain Res 50: 184–186Google Scholar
  20. Fregosi RF, Dempsey JA (1984) Arterial blood acid-base regulation during exercise in rats. J Appl Physiol 57: 396–402Google Scholar
  21. Grandpierre R, Franck C, Violette F, Arnould P (1952) Effets réflexes respiratoires déclenchés par les mouvements passifs. J Physiol (Paris) 44: 253–255Google Scholar
  22. Grillner S (1975) Locomotion in vertebrates: central mechanisms and reflex interaction. Physiol Rev 55: 247–304Google Scholar
  23. Grillner S (1981) Control of locomotion in bipeds, tetrapods and fish. In: Brookhart JM, Mountcastle VB (eds) I. The nervous system. Waverly Press, Baltimore (Handbook of Physiology, Motor control, part 2, pp 1179–1236)Google Scholar
  24. Gromysz H (1984) The effects of pontine or bulbar transection on the respiratory pattern in the rabbit. Acta Neurobiol Exp 44: 239–247Google Scholar
  25. Harrison TR, Harrison WG, Calhoun JA, March JP (1932) Congestive heart failure. XVII. The mechanism of dyspnea on exertion. Arch Int Med 50: 690–720Google Scholar
  26. Holst E von (1939) Die relative Koordination als Phänomen und als Methode zentralnervöser Funktionsanalyse. Ergeb Physiol 42: 228–306Google Scholar
  27. Holst E von (1973) The behavioral physiology of animals and man: the collected papers of Erich von Holst, Vol 1. Methuen, London, pp 33–138Google Scholar
  28. Hutt BK, Horvath SM, Spurr GB (1958) Influence of varying degrees of passive limb movements on respiration and oxygen consumption of man. J Appl Physiol 12: 297–300Google Scholar
  29. Jasinkas CL, Wilson BA, Hoare S (1980) Entrainment of breathing rate to movement frequency during work at two intensities. Resp Physiol 42: 199–210Google Scholar
  30. Krogh A, Lindhard J (1913) The regulation of respiration and circulation during the initial stages of muscular work. J Physiol (Lond) 47: 112–136Google Scholar
  31. Liljestrand G, Stenstrom N (1922) Wirkung von Massage und passiven Bewegungen auf Gaswechsel und Minuten-Volumen des Herzens. Skand Arch Physiol 42: 81–103Google Scholar
  32. Lumsden T (1923) Observations on the respiratory centres in the cat. J Physiol (Lond) 57: 153–160Google Scholar
  33. Mori S, Shik ML, Yagodnitsyn AS (1977) Role of the pontine tegmentum for locomotor control in mesencephalic cat. J Neurophysiol 40: 284–295Google Scholar
  34. Orlovsky GN (1969) Spontaneous and induced locomotion of the thalamic cat. Biophysics 14: 1154–1162Google Scholar
  35. Otis AB (1949) Application of Gray's theory of respiratory control to the hyperpnea produced by passive movements of the limbs. J Appl Physiol 1: 743–751Google Scholar
  36. Palisses R, Persegol L, Viala D (1988) Reflex modulation of phrenic activity through hindlimb passive motion in decorticate and spinal rabbit preparation. Neuroscience 24: 719–728Google Scholar
  37. Pan LG, Forster HV, Bisgard GE, Kaminsky RP, Dorsey SM, Busch MA (1983) Hyperventilation in ponies at the onset of and during steady-state-exercise. J Appl Physiol 54: 1394–1402Google Scholar
  38. Segers LS, Shannon R, Lindsey BG (1985) Interactions between rostral pontine and ventral medullary respiratory neurons. J Neurophysiol 54: 318–334Google Scholar
  39. Shik ML, Orlovsky GN (1976) Neurophysiology of locomotor automatism. Physiol Rev 56: 465–501PubMedGoogle Scholar
  40. Smith CA, Mitchell GS, Jameson LC, Musch TI, Dempsey JA (1983) Ventilatory response of goats to treadmill exercise: grade effects. Resp Physiol 54: 331–341Google Scholar
  41. Steeves JD, Jordan LM (1984) Autoradiographic demonstration of the projections from the mesencephalic locomotor region. Brain Res 307: 263–276Google Scholar
  42. Szlyk PC, Mc Donald BW, Pendergast DR, Krasney JA (1981) Control of ventilation during graded exercise in the dog. Resp Physiol 46: 345–366Google Scholar
  43. Viala D (1986) Evidence for direct reciprocal interactions between the central rhythm generators for spinal “respiratory” and locomotor activities in the rabbit. Exp Brain Res 63: 225–232Google Scholar
  44. Viala D, Buser P (1971) Modalités d'obtention de rythmes locomoteurs chez le lapin spinal par traitements pharmacologiques (DOPA, 5 HTP, D-amphetamine). Brain Res 35: 151–165Google Scholar
  45. Viala D, Freton E (1980) Mise en évidence de rythmes locomoteurs et de rythmes “respiratoires” dans la moelle cervico-thoracique du lapin. CR Acad Sci D Paris 291: 573–576Google Scholar
  46. Viala D, Freton E (1983) Evidence for respiratory and locomotor pattern generators in the rabbit cervico-thoracic cord and for their interactions. Exp Brain Res 49: 247–256Google Scholar
  47. Viala D, Persegol L, Palisses R (1987) Relationship between phrenic and hindlimb extensor activities during fictive locomotion. Neurosci Lett 74: 49–52Google Scholar
  48. Viala D, Vidal C, Freton E (1979) Coordinated rhythmic bursting in respiratory and locomotor muscle nerves in the spinal rabbit. Neurosci Lett 11: 155–159Google Scholar
  49. Waldrop TG, Mullins DC, Henderson MC (1986) Effects of hypothalamic lesions on the cardiorespiratory responses to muscular contraction. Resp Physiol 66: 215–224Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • L. Perségol
    • 1
  • M. Jordan
    • 2
  • D. Viala
    • 1
  • C. Fernandez
    • 1
  1. 1.Laboratoire de NeurophysiologieCNRS-UA 1199, Faculté des Sciences MirandeDijonFrance
  2. 2.Département InformatiqueIUTDijonFrance

Personalised recommendations