Journal of Automated Reasoning

, Volume 3, Issue 4, pp 379–381 | Cite as

A note on a canonical theory with undecidable unification and matching problem

  • Alexander Bockmayr


A natural example of a canonical theory with undecidable unification and matching problem is presented.

Key words

Unification Matching Equational Theories Canonical Term Rewriting Systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Davis, M. (1973) ‘Hilbert's tenth problem is unsolvable’, Amer. Math. Monthly 80 233–269.Google Scholar
  2. [2]
    Göbel, R. (1986) Private Communication, University of Kaiserslautern, Fachbereich Informatik, Postfach 3049, D-6750 Kaiserslautern, F.R.G.Google Scholar
  3. [3]
    Heilbrunner, S. and Hölldobler, S. (1986) ‘The undecidability of the unification and matching problem for canonical theories’, submitted to Acta Informatica.Google Scholar
  4. [4]
    Huet, G. and Oppen, D. C. (1980) ‘Equations and rewrite rules: A survey’, in Formal Languages: Perspectives and Open Problems, Book, R. (ed.), Academic Press, pp. 349–405.Google Scholar
  5. [5]
    Matijasevich, Y. (1970) ‘Enumerable sets are diophantine’, Sov. Math. Doklady 11 354–357.Google Scholar
  6. [6]
    Réty, P., Kirchner, C., Kirchner, H., and Lescanne, P. (1985) NARROWER: A new Algorithm for Unification and its Applications to Logic Programming, Rewriting Techniques and Applications, Dijon Springer LNCS 202, pp. 141–155.Google Scholar
  7. [7]
    Siekmann, J. (1986) Unification Theory. Proc. of 8th ECAI-86, Brighton, pp. vi–xxxvGoogle Scholar
  8. [8]
    Szabo, P. (1982) ‘Unifikationstheorie Erster Ordnung’, Dissertation (in German), Universität Karlsruhe.Google Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • Alexander Bockmayr
    • 1
  1. 1.Institut für Informatik IUniversität KarlsruheKarlsruhe 1F.R.G.

Personalised recommendations