Journal of Philosophical Logic

, Volume 12, Issue 2, pp 151–172 | Cite as

Constructions, proofs and the meaning of logical constants

  • Göran Sundholm
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Beeson, M., A Theory of Constructions and Proofs, Preprint No. 134, Dept. of Mathematics, Univ. of Utrecht (1979).Google Scholar
  2. Beeson, M., Problematic Principles in Constructive Mathematics, Preprint No. 185, Dept. of Mathematics, Univ. of Utrecht (1981).Google Scholar
  3. Beeson, M., ‘Formalizing Constructive Mathematics: Why and how?’, in Richman, E. (ed.), Constructive Mathematics, Lecture Notes in Mathematics, Vol. 873, pp. 146–190, Springer, Berlin (1981a).Google Scholar
  4. Bell, D. Frege's Theory of Judgement, Clarendon Press, Oxford (1979).Google Scholar
  5. Brouwer, L. E. J., ‘Mathematik, Wissenschaft, Sprache’, Monatshefte f. Mathematik und Physik 36 (1929), 153–164.CrossRefGoogle Scholar
  6. Brouwer, L. E. J., ‘Consciousness, Philosophy and Mathematics’, in Proc. Xth Intern. Congress Philosophy, pp. 1235–1249, North-Holland, Amsterdam (1948).Google Scholar
  7. Brouwer, L. E. J., Brouwer's Cambridge Lectures on Intuitionism, v. Dalen (ed.), C.U.P., Cambridge (1981).Google Scholar
  8. de Bruijn, N. G., ‘A Survey of the Project AUTOMATH’, in Seldin and Hindley (eds.), To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 579–606, Academic Press, London (1980).Google Scholar
  9. van Dalen, D., ‘Lectures on Intuitionism’, in Mathias, A. D. and Rogers, H. (eds.), Cambridge Summer School in Mathematical Logic, pp. 1–94, Lecture Notes in Mathematics 337, Springer, Berlin (1973).Google Scholar
  10. van Dalen, D., ‘Interpreting Intuitionistic Logic’, in Baayer, v. Dulst and Oosterhoof (eds.), Proc. Bicentenical Congress Wiskundig Genootschap, Vol. I, pp. 133–148. Mathematical Centre Tracts 100, Mathematisch Centrum, Amsterdam (1979).Google Scholar
  11. Dummett, M., ‘The Philosophical Singnificance of Gödel's Theorem’, in TE, pp. 186–201 (1963). Also published in Ratio V (1963), 140–155.Google Scholar
  12. Dummett, M., ‘The Reality of the Past’, in TE, pp. 358–374 (1969).Google Scholar
  13. Dummett, M., Frege, Duckworth. London (1973).Google Scholar
  14. Dummett, M., ‘The Justification of Deduction’, in TE, pp. 290–318 (1973a). Also published in Proc. British Academy, Vol. LIX, 1975, pp. 201–232.Google Scholar
  15. Dummett, M., ‘What is a Theory of Meaning? (II)’, in Evans and McDowell (eds.), Truth and Meaning, Clarendon Press, Oxford (1976).Google Scholar
  16. Dummett, M., Elements of Intuitionism, Clarendon Press, Oxford (1977).Google Scholar
  17. Dummett, M., ‘Comments on Professor Prawitz's Paper’, in von Wright (ed.), Logic and Philosophy, pp. 11–18, Nijhoff, The Hague (1980).Google Scholar
  18. TE, Truth and Other Enigmas, Duckworth, London (1978).Google Scholar
  19. Feferman, S., ‘Constructive Theories of Functions and Classes’, in Boffa v. Dalen and McAloon (eds.), Logic Colloquim '78, pp. 159–224, North-Holland, Amsterdam (1979).Google Scholar
  20. Frege, G., ‘Der Gedanke’, Beiträge zur Philosophie des Deutschen Idealismus 1 (1918), 588–77.Google Scholar
  21. Goodman, N., ‘A Theory of Constructions Equivalent to Arithmetic’, in Kino, Myhill and Vesley (eds.), Intuitionism and Proof Theory, pp. 101–120, North-Holland, Amsterdam (1970).Google Scholar
  22. Heyting, A., ‘Sur la logique intuitioniste’, Acad. Royale de Belgique, Bulletin de la classe de Sciences (5), 16 (1930), 957–963.Google Scholar
  23. Heyting, A., ‘Die intuitionistische Grundlegung der Mathematik’, Erkenntnis 2 (1931), 106–115.Google Scholar
  24. Heyting, A., Mathematische Grundlagenforschung, Intuitionismus, Beweistheorie, Springer. Berlin (1934).Google Scholar
  25. Heyting, A., ‘Intuitionism in Mathematics’, in R. Klibansky (ed.), Philosophy in the Mid-century: A Survey, pp. 101–115, La nuova editrice, Firenze (1958).Google Scholar
  26. Heyting, A., ‘Blick von den intuitionitischen Warte’, Dialectica 12, (1958a) 332–345.Google Scholar
  27. Heyting, A., ‘On truth in mathematics’, in Verslag van de plechtige viering van het hondervijftigjarig bestaan der Koninklijke Nederlanse Akademie van Wetenschappen met de teksten der bij die gelegenheid gehouden redevoeringen en voordrachten, pp. 227–279, North-Holland, Amsterdam (1958b).Google Scholar
  28. Heyting, A., ‘Remarques sur le constructivisme’, Logique et Analyse 3 (1960), 177–182.Google Scholar
  29. Heyting, A., ‘Intuitionism in Mathematics’, in R. Klibansky (ed.), Contemporary Philosophy. A survey I Logic and Foundations of Mathematics, pp. 316–323, La Nuova Italia editrice, Firenze (1968).Google Scholar
  30. Heyting, A., ‘Intuitionistic Views on the Nature of Mathematics’, Synthese 27 (1974), 79–91.Google Scholar
  31. Howard, W. A., ‘The Formulae-as-types Notion of Construction’, in Seldin and Hindley (eds.), To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 479–490, Academic Press, London (1980).Google Scholar
  32. Kleene, S. C., ‘On the Interpretation of Intuitionistic Number Theory’, Journal of Symbolic Logic 10 (1945), 109–124.Google Scholar
  33. Kolmogoroff, A., ‘Zur Deutung der Intuitionistischen Logik’, Math. Zeitschr. 35 (1932), 58–65.Google Scholar
  34. Kreisel, G., ‘Essay-review of Wittgenstein (1956)’ British J. Philosophy of Science, Vol. XI (1958), 135–158.Google Scholar
  35. Kreisel, G., ‘Set-theoretical Problems Suggested by the Notion of Potential Totality’, in Infinitistic Methods, pp. 103–140, Pergamon Press, Oxford (1961).Google Scholar
  36. Kreisel, G., ‘Foundations of Intuitionistic Logic’, in Nagel, Suppes and Tarski (eds.), Logic, Methodology and Philosophy of Science, pp. 198–210. Stanford Univ. Press, Stanford (1962).Google Scholar
  37. Kreisel, G., ‘Mathematical Logic’, in Saaty (ed.) Lectures on Modern Mathematics, III, pp. 95–195, Wiley, New York (1965).Google Scholar
  38. Kreisel, G., ‘Perspectives in the Philosophy of Pure Mathematics’, in Suppes, Henkin, Joja and Moisil (eds.), Logic, Methodology and Philosophy of Science IV, pp. 255–278, North-Holland, Amsterdam (1973).Google Scholar
  39. Läuchli, H., ‘An Abstract Notion of Realizability for which Intuitionistic Predicate Calculus is Complete’, in Myhill, Kino and Vesley (eds.) Intuitionism and Proof Theory, pp. 227–234, North-Holland, Amsterdam (1970).Google Scholar
  40. Martin-Löf, P., An Intuitionistic Theory of Types; Predicative Part’, in Rose and Shepherdson (eds.), Logic Colloquim '73, pp. 73–118, North-Holland, Amsterdam (1975).Google Scholar
  41. Martin-Löf, P., ‘About Models for Intuitionistic Type-theories and the Notion of Definitional Equality’, in Kanger (ed.), Proc. 3rd Scand. Logic Symp., pp. 81–109. North-Holland, Amsterdam (1975a).Google Scholar
  42. Martin-Löf, P., Constructive Mathematics and Computer Programming, Report No. 11, Dept. of Mathematics, Univ. of Stockholm (1979). Forthcoming in the Proceedings of the VIth Conference for Logic, Methodology and Philosophy of Science.Google Scholar
  43. Myhill, J., ‘Notes Towards and Axiomatization of Intuitionistic Analysis’, Logique et Analyse 35 (1967), 280–297.Google Scholar
  44. Myhill, J., ‘The Formalization of Intuitionism’, in R. Klibansky (ed.), Contemporary Philosophy I; Logic and Foundations of Mathematics, pp. 324–341, La Nuova Italia Editrice, Firenze (1968).Google Scholar
  45. Scott, D. S., ‘Constructive Validity’, in Symposium on Automatic Demonstration, Lecture Notes in Mathematics 125, pp. 237–275, Springer, Berlin (1970).Google Scholar
  46. Troelstra, A. S. Principles of Intuitionism, Lecture Notes in Mathematics 95, Springer, Berlin (1969).Google Scholar
  47. Troelstra, A. S., ‘Aspects of Constructive Mathematics’, in Barwise, J. (ed.), Handbook of Mathematical Logic, pp. 973–1052, North-Holland, Amsterdam (1977).Google Scholar
  48. Troelstra, A. S., ‘Arend Heyting and his Contribution to Intuitionism’, Niew Archief voor Wiskunde (3), XXIX (1981), 1–23.Google Scholar
  49. Wittgenstein, L., Remarks on the Foundations of Mathematics, Blackwell, Oxford (1956).Google Scholar

Copyright information

© D. Reidel Publishing Company 1983

Authors and Affiliations

  • Göran Sundholm
    • 1
  1. 1.Central Interfaculty of PhilosophyUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations