Advertisement

Archives of Microbiology

, Volume 156, Issue 6, pp 491–496 | Cite as

ATP synthesis from 2,3-diphosphoglycerate by cell-free extract of Methanobacterium thermoautotrophicum (strain ΔH)

  • Gert-Jan W. M. van Alebeek
  • Corné Klaassen
  • Jan T. Keltjens
  • Chris van der Drift
  • Godfried D. Vogels
Original Papers

Abstract

Cell-free extracts of Methanobacterium thermoautotrophicum were found to catalyze ATP synthesis from an endogeneous substrate. Synthesis was stimulated under hydrogen atmosphere and inhibited by KCL (Ki=150 mM). Comparison of the properties of a number of cell constituents showed the endogeneous substrate to be 2,3-diphosphoglycerate. The compound is converted into 3-phosphoglycerate, and via 2-phosphoglycerate and phosphoenolpyruvate into pyruvate, at which the latter reaction is linked with ATP synthesis.

Key words

Methanogenic bacteria Methanobacterium thermoautotrophicum ATP synthesis 2,3-Diphosphoglycerate 2,3-Diphosphoglycerate phosphatase Cyclic 2,3-diphosphoglycerate 

Abbreviations

HS-CoM

Coenzyme M, 2-mercaptoethanesulfonate

CH3S-CoM

methylcoenzyme m, 2-(methylthio)ethanesulfonate

HS-HTP

7-mercaptoheptanoyl-l-threonine phosphate

CoM-SS-HTP

the heterodisulfide of HS-CoM and HS-HTP

BCFE

bolled cell-free extract

TES

N-tris(hydroxymethyl)methyl-2-aminoethanesulfonate

HEPES

N-2-hydroxyethylpiperazine-N′-ethanesulfonic acid

PEP

phosphoenolpyruvate

2,3-DPG

2,3-diphosphoglycerate

cDPG

cyclic 2,3-diphosphoglycerate

3-PG

3-phosphoglycerate

2-PG

2-phosphoglycerate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blaut M, Peinemann S, Deppenmeier U, Gottschalk G (1990) Energy transduction in vesicles of the methanogenic strain Gö 1. FEMS Microbiol Rev 87:367–372Google Scholar
  2. Deppenmeier U, Blaut M, Gottschalk G (1991) H2: heterodisulfide oxidoreductase, a second energy-conserving system in the methanogenic strain Gö 1. Arch Microbiol 155:272–277CrossRefGoogle Scholar
  3. Deppenmeier U, Blaut M, Mahlmann A, Gottschalk G (1990) Reduced coenzyme F420: heterodisulfide oxidoreductase, a proton-translocating redox system in methanogenic bacteria. Proc Natl Acad Sci USA 87:9449–9453CrossRefGoogle Scholar
  4. DiMarco AA, Bobik TA, Wolfe RS (1990) Unusual coenzymes of methanogenesis. Annu Rev Biochem 59:355–394CrossRefGoogle Scholar
  5. Evans JNS, Raleigh DP, Tolman CJ, Roberts MF (1986) 13C NMR spectroscopy of Methanobacterium thermoautotrophicum. Carbon fluxes and primary metabolic pathways. J Biol Chem 261:16323–16331PubMedGoogle Scholar
  6. Evans JNS, Tolman CJ, Kanodia S, Roberts MF (1985) 2,3-Cyclophosphoglycerate in methanogens: evidence by 13C NMR spectroscopy for a role in carbohydrate metabolism. Biochemistry 24:5693–5698CrossRefGoogle Scholar
  7. Eyzaguirre J, Jansen K, Fuchs G (1982) Phosphoenolpyruvate synthetase in Methanobacterium thermoautotrophicum. Arch Microbiol 132:67–74CrossRefGoogle Scholar
  8. Gorris LGM, Korteland J, Derksen RJAM, Van der Drift C, Vogels GD (1990) Quantification of cyclic 2,3-diphosphoglycerate from methanogenic bacteria by isotachophoresis. J Chromatogr 504:421–428CrossRefGoogle Scholar
  9. Gottschalk G, Blaut M (1990) Generation of proton and sodium motive forces in methanogenic bacteria. Biochem Biophys Acta 1018:263–266Google Scholar
  10. Hensel R, König H (1988) Thermoadaptation of methanogenic bacteria by intracellular ion concentration. FEMS Microbiol Lett 49:75–79CrossRefGoogle Scholar
  11. Hermans JMH, Hutten TJ, Van der Drift C, Vogels GD (1980) Analysis of coenzyme M derivatives by isotachophoresis. Anal Biochem 106:363–366CrossRefGoogle Scholar
  12. Jansen K, Stupperich E, Fuchs G (1982) Carbohydrate synthesis from acetyl-CoA in the autotroph Methanobacterium thermoautotrophicum. Arch Microbiol 132:355–364CrossRefGoogle Scholar
  13. Kanodia S, Roberts MF (1983) Methanophosphagen: unique cyclic pyrophosphate isolated from Methanobacterium thermoautotrophicum. Proc Natl Acad Sci USA 80:5217–5221CrossRefGoogle Scholar
  14. Keltjens JT, Kraft HJ, Damen WG, Van der Drift C, Vogels GD (1989) Stimulation of the methylcoenzyme M reduction by uridine-5′-diphospho-sugars in cell-free extracts of Methanobacterium thermoautotrophicum (strain ΔH). Eur J Biochem 184:395–403CrossRefGoogle Scholar
  15. Kengen SWM, Von den Hoff HW, Keltjens JT, Van der Drift C, Vogels GD (1991) Hydrolysis and reduction of factor 390 by cell extracts of Methanobacterium thermoautotrophicum (strain ΔH). J Bacteriol 173:2283–2288CrossRefGoogle Scholar
  16. Kiener A, Orme-Johnson WH, Walsh CT (1988) Reversible conversion of coenzyme F420 to the 8-OH-AMP and 8-OH-GMP esters, F390A and F390G, on oxygen exposure and reestablishment of anaerobiosis in Methanobacterium thermoautotrophicum. Arch Microbiol 150:249–253CrossRefGoogle Scholar
  17. Kimmich GA, Randles J, Brand JS (1975) Assay of picomole amounts of ATP, ADP, and AMP using the luciferase enzyme system. Anal Biochem 69:187–206CrossRefGoogle Scholar
  18. Lehmacher A, Vogt A-B, Hensel R (1990) Biosynthesis of cyclic 2,3-diphosphoglycerate. Isolation and characterization of 2-phosphoglycerate kinase and cyclic 2,3-diphosphoglycerate synthetase from Methanothermus fervidus. FEBS Lett 272:945–948CrossRefGoogle Scholar
  19. Schönheit P, Moll J, Thauer RK (1979) Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum. Arch Microbiol 123:105–107CrossRefGoogle Scholar
  20. Sedmak JJ, Grosberg SE (1977) A rapid, sensitive, and versatile assay for protein using Coomassie Brilliant Blue G250. Anal Biochem 79:544–552CrossRefGoogle Scholar
  21. Seely RJ, Fahrney DE (1984) Levels of cyclic-2,3-diphosphoglycerate in Methanobacterium thermoautotrophicum during phosphate limitation. J Bacteriol 160:50–54PubMedPubMedCentralGoogle Scholar
  22. Thauer RK (1990) Energy metabolism of methanogenic bacteria. Biochim Biophys Acta 1018:256–259CrossRefGoogle Scholar
  23. Tolman CJ, Kanodia S, Roberts MF, Daniels L (1986) 31P-NMR spectra of methanogens: 2,3-cyclopyrophosphoglycerate is detectable only in methanogenic strains. Biochim Biophys Acta 886:345–352CrossRefGoogle Scholar
  24. Van Beelen P, Geerts WJ, Pol A, Vogels GD (1983) Quantification of coenzymes and related compounds from methanogenic bacteria by high-performance liquid chromatography. Anal Biochem 131:285–290CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Gert-Jan W. M. van Alebeek
    • 1
  • Corné Klaassen
    • 1
  • Jan T. Keltjens
    • 1
  • Chris van der Drift
    • 1
  • Godfried D. Vogels
    • 1
  1. 1.Department of Microbiology, Faculty of ScienceUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations