Advertisement

Archives of Microbiology

, Volume 156, Issue 6, pp 477–483 | Cite as

The methane monooxygenase gene cluster of Methylosinus trichosporium: cloning and sequencing of the mmoC gene

  • D. L. N. Cardy
  • V. Laidler
  • G. P. C. Salmond
  • J. C. Murrell
Original Papers
  • 123 Downloads

Abstract

Methane monooxygenase (MMO) is the enzyme responsible for the conversion of methane to methanol in methanotrophic bacteria. The soluble MMO enzyme complex from Methylosinus trichosporium also oxidizes a wide range of aliphatic and aromatic compounds in a number of potentially useful biotransformations. In this study we have used heterologous DNA probes from the type X methanotroph Methylococcus capsulatus (Bath) to isolate mmo genes from the type II methanotroph M. trichosporium. We report here that the gene encoding the reductase component, Protein C of MMO, lies adjacent to the genes encoding the other components of soluble MMO in M. trichosporium but is separated by an open reading frame of unknown function, orfY. The complete nucleotide sequence of these genes is presented. Sequence analysis of mmoC indicates that the N-terminus of Protein C has significant homology with 2Fe2S ferredoxins from a wide range of organisms.

Key words

Methane oxidation Methanotroph Methane monooxygenase Methylosinus trichosporium Iron-sulphur flavoprotein 

Abbreviations

MMO

methane monooxygenase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benson AM, Yasunobu KT (1969) Non-heme iron proteins. The amino acid sequences of ferredoxins from Leucaena glauca. J Biol Chem 244:955–963PubMedGoogle Scholar
  2. Burrows KJ, Cornish A, Scott D, Higgins IJ (1984) Substrate specificities of the soluble and particulate methane monooxygenases of Methylosinus trichosporium OB3b. J Gen Microbiol 130:3327–3333Google Scholar
  3. Cardy DLN, Murrell JC (1990) Cloning, sequencing and expression of the glutamine synthetase structural gene (glnA) from the obligate methanotroph Methylococcus capsulatus (Bath). J Gen Microbiol 136:343–352CrossRefGoogle Scholar
  4. Cardy DLN, Laidler V, Salmond GPC, Murrell JC (1991) Molecular analysis of the methane monooxygenase (MMO) gene cluster of Methylosinus trichosporium OB3b. Mol Microbiol 4:335–342CrossRefGoogle Scholar
  5. Collins JF, Coulson AFW (1987) Molecular sequence comparison and alignment. In: Bishop MJ, Rawkins CJ (eds) Nucleic acid and protein sequence analysis; a practical approach. IRL Press, Oxford, pp 323–358Google Scholar
  6. Cozens AL, Walker JE (1987) The organization and sequence of the genes for ATP synthase subunits in the cyanobacterium Synechococcus 6301. Support for an endosymbiotic origin of chloroplasts. J Mol Biol 194:359–383CrossRefGoogle Scholar
  7. Devereux J, Heberli P, Smithies O (1984) A nucleic acid analysis program for the VAX. Nucleic Acids Res 12:387–395CrossRefGoogle Scholar
  8. Fox BG, Lipscomb JD (1988) Purification of a high specific activity methane monooxygenase hydroxylase component from a type II methanotroph. biochem Biophys Res Commun 154:165–170CrossRefGoogle Scholar
  9. Fox BG, Surerus KK, Munck E, Lipscomb JD (1988) Evidence for a μ-oxo-bridged binuclear iron cluster in the hydroxylase component of methane monooxygenase. J Biol Chem 263:10553–10556PubMedGoogle Scholar
  10. Fox BG, Froland WA, Dege JE, Lipscomb JD (1989) Methane monooxygenase from Methylosinus trichosporium OB3b. Purification and properties of a three-component system with high specific activity from a type II methanotroph. J Biol Chem 264:10023–10033PubMedGoogle Scholar
  11. Fox BG, Liu Y, Dege JE, Lipscomb JD (1991) Complex formation between the protein components of methane monooxygenase from Methylosinus trichosporium OB3b. J Biol Chem 266:540–550PubMedGoogle Scholar
  12. Hase T, Inoue K, Matsubara H, Williams MM, Rogers LJ (1982) Amino acid sequence of Synechocystis 6714 ferredoxin: a unique structural feature of unicellular blue-green algal ferredoxin. J Biochem 92:1357–1362CrossRefGoogle Scholar
  13. Hase T, Wada K, Matsubara H (1977) Horsetail (Equisetum telmateia) ferredoxins I and II. J Biochem 82:267–276CrossRefGoogle Scholar
  14. Hase T, Wakabayashi S, Matsubara H, Mevarech M, Werber MM (1980) Amino acid sequence of 2Fe-2S ferredoxin from an extreme halophile, Halobacterium of the Dead Sea. Biochim Biophys Acta 623:139–145CrossRefGoogle Scholar
  15. Hase T, Wakabayashi S, Wada K, Matsubara H (1978) Amino acid sequence of Aphanothece sacrum ferredoxin II (minor component). J Biochem 83:761–770CrossRefGoogle Scholar
  16. Hausinger RP, Moura I, Moura JJG, Xavier AV, Santos MH, LeGall J, Howard JB (1982) Amino acid sequence of a 3Fe:3S ferredoxin from the “Archaebacterium” Methanosarcina barkeri (DSM 800). J Biol Chem 257:14192–14197PubMedGoogle Scholar
  17. Higgins DG, Sharp PM (1988) CLUSTAL: a package for performing multiple sequence alignments on a microcomputer. Gene 73:237–244CrossRefGoogle Scholar
  18. Higgins IJ, Hammond RC, Sariaslani FS, Best D, Davies MM, Tryhorn SE, Taylor F (1979) Biotransformation of hydrocarbons and related compounds by whole organisms suspensions of methane-grown Methylosinus trichosporium OB3b. Biochem Biophys Res Commun 89:671–677CrossRefGoogle Scholar
  19. Higgins IJ, Best DJ, Hammond RC, Scott D (1981) Methane oxidizing microorganisms. Microbiol Rev 45:556–590PubMedPubMedCentralGoogle Scholar
  20. Kamo M, Kotani N, Tsugita A, He YK, Nozu Y (1988) Amino acid sequence of ferredoxin I from Oryza sativa (rice). (unpublished) Swisprot Database Accession No. JT0223Google Scholar
  21. Lund J, Dalton H (1985) Further investigation of the FAD and Fe2S2 redox centres of component C NADH: acceptor reductase of the soluble methane monooxygenase from Methylococcus capsulatus (Bath). Eur J Biochem 147:291–296CrossRefGoogle Scholar
  22. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring, New YorkGoogle Scholar
  23. Minami Y, Wakabayashi S, Imoto S, Ohta Y, Matsubara H (1985) Ferredoxin from a liverwort, Marchantia polymorpha. Purification and amino acid sequence. J Biochem 98:649–655CrossRefGoogle Scholar
  24. Nordlund I, Powlowski J, Shingler V (1990) Complete nucleotide sequence and polypeptide analysis of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600. J Bacteriol 172:6826–6833CrossRefGoogle Scholar
  25. Oakley CJ, Murrell JC (1988) nifH genes in the obligate methane oxidizing bacteria. FEMS Microbiol Lett 49:53–57CrossRefGoogle Scholar
  26. Pilkington SJ, Salmond GPC, Murrell JC, Dalton H (1990) Identification of the gene encoding the regulatory protein B of soluble methane monooxygenase. FEMS Microbiol Lett 72:345–348CrossRefGoogle Scholar
  27. Powlowski J, Shingler V (1990) In vitro analysis of polypeptide requirements of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600. J Bacteriol 172:6834–6840CrossRefGoogle Scholar
  28. Queen L, Korn LJ (1986) A comprehensive sequence analysis program for the IBM personal computer. Nucleic Acids Res 12:581–599CrossRefGoogle Scholar
  29. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467CrossRefGoogle Scholar
  30. Scott D, Brannan J, Higgins IJ (1981) The effect of growth conditions on intracytoplasmic membranes and methane monooxygenase activities in Methylosinus trichosporium OB3b. J Gen Microbiol 125:63–72Google Scholar
  31. Stainthorpe AC, Murrell JC, Salmond GPC, Dalton H, Lees V (1989) Molecular analysis of methane monooxygenase from Methylococcus capsulatus (Bath). Arch Microbiol 152:154–159CrossRefGoogle Scholar
  32. Stainthorpe AC, Lees V, Salmond GPC, Dalton H, Murrell JC (1990a) The methane monooxygenase gene cluster of Methylococcus capsulatus (Bath). Gene 91:27–34CrossRefGoogle Scholar
  33. Stainthorpe AC, Salmond GPC, Dalton H, Murrell JC (1990b) Screening of obligate methanotrophs for soluble methane monooxygenase genes. FEMS Microbiol Lett 70:211–216CrossRefGoogle Scholar
  34. Stirling DI, Dalton H (1979) Properties of the methane monooxygenase from extracts of Methylosinus trichosporium OB3b and evidence for its similarity to the enzyme from Methylococcus capsulatus (Bath). Eur J Biochem 96:205–212CrossRefGoogle Scholar
  35. Takruri IAH, Boulter D (1979a) The amino acid sequence of ferredoxin from Sambucus nigra. Phytochemistry 18:1481–1484CrossRefGoogle Scholar
  36. Takruri IAH, Boulter D (1979b) The amino acid sequence of ferredoxin from Triticum aestivum (Wheat). Biochem J 179:373–378CrossRefGoogle Scholar
  37. Tanaka M, Haniu M, Yasunobu KT, Rao KK, Hall DO (1975) Modification of the automated sequence determination as applied to the sequence determination of Spirulina maxima ferredoxin. Biochemistry 14:5535–5540CrossRefGoogle Scholar
  38. Tonge GM, Harrison DEF, Higgins IJ (1977) Purification and properties of the methane monooxygenase enzyme system from Methylosinus trichosporium OB3b. Biochem J 161:333–344CrossRefGoogle Scholar
  39. Wakabayashi S, Hase T, Wada K, Matsubara H, Suzuki K, Takaichi S (1980) Amino acid sequences of two ferredoxins from Phytolacca esculenta. J Biochem 87:227–236CrossRefGoogle Scholar
  40. Whittenbury R, Dalton H (1981) The methylotrophic bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin Heidelberg New York, pp 894–902CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • D. L. N. Cardy
    • 1
  • V. Laidler
    • 1
  • G. P. C. Salmond
    • 1
  • J. C. Murrell
    • 1
  1. 1.Department of Biological SciencesUniversity of WarwickCoventryUK

Personalised recommendations