Advertisement

Archives of Microbiology

, Volume 158, Issue 5, pp 311–314 | Cite as

Bacterial fumarate respiration

  • A. Kröger
  • V. Geisler
  • E. Lemma
  • F. Theis
  • R. Lenger
Minireview

Keywords

Respiration Fumarate Fumarate Respiration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

ETP

electron transport coupled phosphorylation

MK

menaquinone

MKH2

menaquinol

Em

midpoint potential

E′0

standard redox potential at pH 7

ΔE′0

difference of standard redox potentials at pH 7

ΔG

free energy of a chemical reaction

ΔG′0

standard free energy at pH 7

ΔGPhos

phosphorylation potential at pH 7

\(\Delta \tilde \mu _H\)

electrochemical proton potential across a membrane

ATP/e

ATP gain per electron in ETP

H+/ATP

amount of protons translocated across the membrane per ATP synthesized

H+/e

amount of protons translocated across the membrane per electron transported

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albracht SPJ, Unden G, Kröger A (1981) Iron-sulphur clusters in fumarate reductase from Vibrio succinogenes. Biochim Biophys Acta 661: 295–302Google Scholar
  2. Albracht SPJ, Kröger A, Zwaan JW van der, Unden G, Böcher R, Mell H, Fontijn RD (1986) Direct evidence for sulphur as a ligand to nickel in hydrogenase. An EPR study of the enzyme from Wolinella succinogenes enriched in 33S. Biochim Biophys Acta 874: 116–127Google Scholar
  3. Bilous PT, Cole ST, Anderson WF, Weiner JH (1988) Nucleotide sequence of the dmsABC operon encoding the anaerobic dimethylsulphoxide reductase of Escheriachia coli. Mol Microbiol 2: 785–795Google Scholar
  4. Blasco F, Tobbi C, Giordano G, Chippaux M, Bonnefoy V (1989) Nitrate reductase of Escherichia coli: completion of the nucleotide sequence of the nar operon and reassessment of the role of the α and β subunits in iron binding and electron transfer. Mol Gen Genet 218: 249–256Google Scholar
  5. Bokranz M, Katz J, Schröder I, Roberton AM, Kröger A (1983) Energy metabolism and biosynthesis of Vibrio succinogenes growing with nitrate or nitrite as terminal electron acceptor. Arch Microbiol 135: 36–41Google Scholar
  6. Bokranz M, Mörschel E, Kröger A (1985a) Structural and ATP hydrolyzing properties of the ATP synthase isolated from Wolinella succinogenes. Biochim Biophys Acta 810: 84–93Google Scholar
  7. Bokranz M, Mörschel E, Kröger A (1985b) Phosphorylation and phosphate-ATP exchange catalyzed by the ATP synthase isolated from Wolinella succinogenes. Biochim Biophys Acta 810: 332–339Google Scholar
  8. Bokranz M, Gutmann M, Körtner C, Kojro E, Fahrenholz F, Lauterbach F, Kröger A (1991) Cloning and nucleotide sequence of the structural genes encoding the formate dehydrogenase of Wolinella succinogenes. Arch Microbiol 156: 119–128Google Scholar
  9. Brune A, Spillecke J, Kröger A (1987) Correlation of the turnover number of the ATP synthase in liposomes with the proton flux and the proton potential across the membrane. Biochim Biophys Acta 893: 499–507Google Scholar
  10. Cole ST, Condon C, Lemire BD, Weiner JH (1985) Molecular biology, biochemistry and bioenergetics of fumarate reductase, a complex membrane-bound iron-sulfur flavoenzyme of Escherichia coli. Biochim Biophys Acta 811: 381–403Google Scholar
  11. Darlison MG, Guest JR (1984) Nucleotide sequence encoding the iron-sulphur protein subunit of the succinate dehydrogenase of Escherichia coli. J Biochem 223: 507–517Google Scholar
  12. Droß F, Geisler V, Lenger R, Theis F, Krafft T, Fahrenholz F, Kojro E, Duchêne A, Tripier D, Juvenal K, Kröger A (1992) The quinone-reactive Ni/Fe-hydrogenase of Wolinella succinogenes. Eur J Biochem 206: 93–102Google Scholar
  13. Graf M, Bokranz M, Böcher R, Friedl P, Kröger A (1985) Electron transport driven phosphorylation catalyzed by proteoliposomes containing hydrogenase, fumarate reductase and ATP synthase. FEBS Lett 184: 100–103Google Scholar
  14. Ingledew WJ, Poole RK (1984) The respiratory chains of Escherichia coli. Microbiol Rev 48/3: 222–271Google Scholar
  15. Körtner C, Lauterbach F, Tripier D, Unden G, Kröger A (1990) Wolinella succinogenes fumarate reductase contains a diheme cytochrome b. Mol Microbiol 4: 855–860Google Scholar
  16. Krafft T, Bokranz M, Klimmek O, Schröder I, Fahrenholz F, Kojro E, Kröger A (1992) Cloning and nucleotide sequences of the genes encoding the polysulphide reductase of Wolinella succinogenes. Eur J Biochem 206: 503–510Google Scholar
  17. Kröger A, Unden G (1985) The function of menaquinone in bacterial electron transport. In: Lenaz G (ed) Coenzyme Q, John Wiley & Sons, Chichester, pp 285–300Google Scholar
  18. Kröger A, Winkler E, Innerhofer A, Hackenberg H, Schägger H (1979) The formate dehydrogenase involved in electron tranport from formate to fumarate in Vibrio succinogenes. Eur J Biochem 94: 465–475Google Scholar
  19. Kröger A (1980) Bacterial electron transport to fumarate. In: Knowles CJ (ed) Diversity of bacterial respiratory system. CRC Press, Boca Raton, Florida, pp 1–17Google Scholar
  20. Kröger A, Dorrer E, Winkler E (1980) The orientation of the substrate sites of formate dehydrogenase and fumarate reductase in the membrane of Vibrio succinogenes. Biochim Biophys Acta 589: 118–136Google Scholar
  21. Kröger A, Winkler E (1981) Phosphorylation fumarate reduction in Vibrio succinogenes: stoichiometry of ATP synthesis. Arch Microbiol 129: 100–104Google Scholar
  22. Lauterbach F, Körtner C, Albracht SPJ, Unden G, Kröger A (1990) The fumarate reductase operon of Wolinella succinogenes: sequence and expression of the frdA and frdB genes. Arch Microbiol 154: 386–393Google Scholar
  23. Magnusson K, Phillips MK, Guest JR, Rutberg L (1986) Nucleotide sequence of the gene for cytochrome b 558 of the Bacillus subtilis succinate dehydrogenase complex. J Bacteriol 166: 1067–1071Google Scholar
  24. Mell H Wellnitz C, Kröger A (1986) The electrochemical proton potential and the proton/electron ratio of the electron transport with fumarate in Wolinella succinogenes. Biochim Biophys Acta 852: 221–221Google Scholar
  25. Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev 41: 445–502Google Scholar
  26. Phillips MK, Hederstedt L, Hasnain S, Rutberg L, Guerst JR (1987) Nucleotide sequence encoding the flavoprotein and iron-sulfur protein subunits of Bacillus subtilis PY79 succinate dehydrogenase complex. J Bacterol 169: 864–873Google Scholar
  27. Shuber AP, Orr EC, Recny MA, Schendel PF, May HD, Schauer NL, Ferry JG (1986) Cloning, expression, and nucleotide sequence of the formate dehydrogenase genes from Methanobacterium formicicum. J Biol Chem 261: 12942–12947Google Scholar
  28. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41: 100–180Google Scholar
  29. Thauer RK, Morris JG (1984) Metabolism of chemotrophic anaerobes: old views and new aspects. In: Kelly DP, Carr NG (eds) The microbe 1984, part II. Prokaryotes and eukaryotes, Cambridge University Press, Cambridge, pp 123–168Google Scholar
  30. Unden G Kröger A (1981) The function of the subunits of the fumarate reductase complex of Vibrio succinogenes. Eur J Biochem 120: 577–584Google Scholar
  31. Unden G, Böcher R, Knecht J, Kröger A (1982) Hydrogenase from Vibrio succinogenes, a nickel protein. FEBS Lett 145: 230–234Google Scholar
  32. Unden G, Kröger A (1982) Reconstitution in liposomes of the electron transport chain catalyzing fumarate reduction by formate. Biochim Biophys Acta 682: 258–263Google Scholar
  33. Unden G, Mörschel E, Bokranz M, Kröger A (1983) Structural properties of the proteoliposomes catalyzing electron transport from formate to fumarate. Biochim Biophys Acta 725: 41–48Google Scholar
  34. Unden G, Kröger A (1983) Low potential cytochrome b as an essential electron transport component of menaquinone reduction by formate in Vibrio succinogenes. Biochim Biophys Acta 725: 325–331Google Scholar
  35. Unden G, Albracht SPJ, Kröger A (1984) Redoxpotential and kinetic properties of fumarate reductase complex from Vibrio succinogenes. Biochim Biophys Acta 767: 460–469Google Scholar
  36. Wood D, Darlison MG, Wilde RJ, Guest JR (1984) Nucleotide sequence encoding the flavoprotein and hydrophobic subunits of the succinate dehydrogenase of Escherichia coli. J Biochem 222: 519–534Google Scholar
  37. Zinoni F, Birkmann A, Stadtman TC, Böck A (1986) Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (frrmate-hydrogen-lyaselinked) from Escherichia coli. Proc Natl Acad Sci USA 83: 4650–4654Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • A. Kröger
    • 1
  • V. Geisler
    • 1
  • E. Lemma
    • 1
  • F. Theis
    • 1
  • R. Lenger
    • 1
  1. 1.Institut für MikrobiologieJ.-W.-Goethe-UniversitätFrankfurt am MainGermany

Personalised recommendations