Advertisement

Archives of Microbiology

, Volume 157, Issue 2, pp 191–193 | Cite as

D-Gluconate is an alternative growth substrate for cultivation of Schizosaccharomyces pombe mutants

  • Michael Hoever
  • Brigitta Milbradt
  • Milan Höfer
Original Papers
  • 89 Downloads

Abstract

Schizosaccharomyces pombe cells grow on d-gluconate as the sole carbon and energy source. d-Gluconate is taken up in symport with protons by a specific symporter, ΔpH being the sole driving force. d-Gluconate uptake is independent of the sugar transporting system (e.g. for d-glucose) and of Δψ. The carrier is expressed constitutively, and its activity is not subject to glucose repression. Hence, d-gluconate is a suitable carbon and energy source for growth, when d-glucose or other hexoses have to be eliminated e.g. for selection of mutants deficient in hexose transport.

Key words

d-Gluconate uptake H+-Symport Alternative growth substrate Schizosaccharomyces pombe 

Abbreviations

2-DG

2-deoxy-d-glucose

CCCP

carbonylcyanide m-chlorophenylhydrazone

ΔpH

pH-gradient

Δψ

electrical potential difference across the plasma membrane

SD

standard deviation

SEM

standard error of the mean

TPP+

tetraphenylphosphonium

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eddy AA (1978) Proton dependent solute transport in microorganisms. In: Bronner F, Kleinzeller A (eds) current topics in membranes and transport, vol 10. Academic Press, New York San Francisco London, pp 280–360Google Scholar
  2. Eddy AA (1982) Mechanisms of solute transport in selected eukaryotic microorganisms. Adv Microb Physiol 23: 1–270CrossRefGoogle Scholar
  3. Gutz H, Heselot H, Leupold U and Loprieno N (1976) “Schizosaccharomyces pombe’. In: King RC (ed) Handbook of genetics, vol 1. Plenum Press, New York London, pp 395–446Google Scholar
  4. Höfer M (1989) Accumulation of electroneutral and charged carbohydrates by proton cotransport in Rhodotorula. Methods Enzymol 174: 629–653CrossRefGoogle Scholar
  5. Höfer M, Misra PC (1978) Evidence for a H+/sugar symport in the yeast Rhodotorula gracilis. Biochem J 172: 15–22CrossRefGoogle Scholar
  6. Höfer M, Nassar FR (1987) Aerobic and anaerobic uptake of sugars in Schizosaccharomyces pombe. J Gen Microbiol 133: 2163–2172Google Scholar
  7. Möllering H, Bergmeyer HU (1974) Methoden der enzymatischen Analyse, vol 2. Verlag Chemie, WeinheimGoogle Scholar
  8. Niemitz C, Höfer M (1984) Transport of an anionic substrate by the H+/monosaccharide symport in Rhodotorula gracilis: only the protonated form of the carrier is catalytically active. J Membr Biol 80: 235–242CrossRefGoogle Scholar
  9. Severin J, Langel P, Höfer M (1989) Analysis of the H+/sugar symport in yeast under conditions of depolarized plasma membrane. J Bioenerg Biomembr 21: 321–334CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Michael Hoever
    • 1
  • Brigitta Milbradt
    • 1
  • Milan Höfer
    • 1
  1. 1.Botanisches Institut der UniversitätBonnGermany

Personalised recommendations