Advertisement

Archives of Microbiology

, Volume 157, Issue 2, pp 169–175 | Cite as

Selenomonas acidaminovorans sp. nov., a versatile thermophilic proton-reducing anaerobe able to grow by decarboxylation of succinate to propionate

  • Cheng Guangsheng
  • Caroline M. Plugge
  • Wim Roelofsen
  • Frans P. Houwen
  • Alfons J. M. Stams
Original Papers
  • 99 Downloads

Abstract

A moderately thermophilic anaerobic bacterium (strain Su883), which decarboxylated succinate to propionate, was isolated from granular methanogenic sludge. The bacterium appeared to ferment a number of amino acids including glutamate, histidine, arginine, ornithine, citrulline, and threonine to propionate, acetate and hydrogen. Propionate was formed via the oxidative decarboxylation of α-ketoglutarate to succinyl-CoA. In addition, the strain degraded glucose, fructose, glycerol, pyruvate, serine, alanine, citrate and malate to acetate, carbon dioxide and hydrogen, and branched-chain amino acids to branched-chain fatty acids. With all single substrates solely hydrogen was formed as reduced fermentation product. Mixed cultures of strain Su883 and Methanobacterium thermoautotrophicum ΔH showed a more rapid conversion of substrates and with some substrates a shift from acetate to propionate formation.

Strain Su883 is a motile, gram-negative, non-sporeforming, slightly curved rod with a DNA base ratio of 56.5 mol% guanine-plus-cytosine. Selenomonas acidaminovorans Su883 is proposed as type strain for the new species within the genus Selenomonas.

Key words

Fermentation of amino acids Interspecies hydrogen transfer Propionic acid fermentation Selenomonas acidaminovorans Succinate decarboxylation Syntrophic degradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badziong W, Thauer RK (1980) Vectorial electron transport in Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate as sole energy source. Arch Microbiol 125: 167–174CrossRefGoogle Scholar
  2. Benson JR (1974) Single column analysis of amino acids, biological fluids analyzed in five hours. Durrum Resin Report no. 5Google Scholar
  3. Barker HA (1981) Amino acid degradation by anaerobic bacteria. Ann Rev Biochem 50: 23–40CrossRefGoogle Scholar
  4. Bernt E, Bergmeyer HU (1974) l-Glutamate. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie, Weinheim, pp 1704–1708CrossRefGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254CrossRefGoogle Scholar
  6. Brandis-Heep A, Gebhardt NA, Thauer RK, Widdel F, Pfennig N (1983) Anaerobic acetate oxidation to CO2 by Desulfobacter postgatei. 1. Demonstration of all enzymes required for the operation of the citric acid cycle. Arch Microbiol 136: 222–229CrossRefGoogle Scholar
  7. Breznak JM, Switzer JM, Seitz HJ (1988) Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Arch Microbiol 150: 282–288CrossRefGoogle Scholar
  8. Bryant MP (1956) The characteristics of strains of Selenomonas isolated from bovine rumen contents. J Bacteriol 72: 162–167PubMedPubMedCentralGoogle Scholar
  9. Buckel W, Barker HA (1974) Two pathways of glutamate fermentation by anaerobic bacteria. J Bacteriol 117: 1248–1260PubMedPubMedCentralGoogle Scholar
  10. Chang R (1977) Physical chemistry with applications to biological systems. Macmillan, New YorkGoogle Scholar
  11. Dehning I, Stieb M, Schink B (1989) Sporomusa malonica sp.-nov., a homoacetogenic bacterium growing by decarboxylation of malonate or succinate. Arch Microbiol 151: 421–426CrossRefGoogle Scholar
  12. Denger K, Schink B (1990) New motile anaerobic bacteria growing by succinate decarboxylation to propionate. Arch Microbiol 154: 550–555CrossRefGoogle Scholar
  13. Dietrich G, Weiss N, Winter J (1988) Acetothermus paucivorans, gen.nov., sp.nov., a strictly anaerobic, thermophilic bacterium from sewage sludge, fermenting hexoses to acetate, CO2 and H2. Syst Appl Microbiol 10: 174–179CrossRefGoogle Scholar
  14. Doetsch RN (1981) Determinative methods of light microscopy. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Philips GB (eds) Manual of methods for general microbiology. American Society for Microbiology, Washington DC, pp 21–33Google Scholar
  15. Hilpert W, Schink B, Dimroth P (1984) Life by a new decarboxylation-dependent energy conservaion mechanism with Na+ as coupling ion. EMBO J 3: 1665–1670CrossRefGoogle Scholar
  16. Hoffmann A, Laubinger W, Dimroth P (1990) Na+-coupled ATP synthesis in Propionigenium modestum: is it a unique system? Biochim Biophys Acta 1018: 206–210CrossRefGoogle Scholar
  17. Holdeman LV, Kelly RW, Moore WEC (1984) Anaerobic gramnegative straight, curved and helical rods. In: Krieg NR, Holt GH (eds) Bergey's manual of systematic bacteriology, vol 1, 1st edh. Williams & Wilkins, Baltimore, pp 602–662Google Scholar
  18. Houwen FP, Dijkema C, Schoenmakers CHH, Stams AJM, Zehnder AJB (1987) 13C-NMR study of propionate degradation by a methanogenic coculture. FEMS Microbiol Lett 41: 269–274CrossRefGoogle Scholar
  19. Houwen FP, Rebers M, Folkers GE, Stams AJM, Zehnder AJB (1991) The use of a two-liquid-phase electron removal system for culture of proton-reducing bacteria. J Microbiol Methods 13: 223–230CrossRefGoogle Scholar
  20. Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 3B. Academic Press, New York, pp 117–132Google Scholar
  21. Janssen PH (1991) Characterization of a succinate-fermenting anaerobic bacterium isolated from a glycolate-degrading mixed culture. Arch Microbiol 155: 288–293CrossRefGoogle Scholar
  22. Johnson JL (1981) Genetic characterization. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Philips GB (eds) Manual of methods for general microbiology. American Society for Microbiology, Washington DC, pp 450–472Google Scholar
  23. Krumholz LR, Bryant MP (1986) Syntrophococcus sucromutans sp.nov.gen.nov. uses carbohydrates as electron donors and formate, methoxymonobenzoids or Methanobrevibacter as electron acceptor systems. Arch Microbiol 143: 313–318CrossRefGoogle Scholar
  24. Kun E, Kearney EB (1974) Ammonia. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie, Weinheim, pp 1802–1806CrossRefGoogle Scholar
  25. Lee SY, Mabee MS, Jangaard NO (1978) Pectinatus, a new genus of the family Bacteroidaceae. Int J Syst Bacteriol 28: 582–594CrossRefGoogle Scholar
  26. McInerney MJ (1988) Anaerobic hydrolysis and fermentation of fats and proteins. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 373–415Google Scholar
  27. Nagase M, Matsuo T (1982) Interaction between amino-acid degrading bacteria and methanogenic bacteria in anaerobic digestion. Biotechnol Bioeng 24: 2227–2239CrossRefGoogle Scholar
  28. Nanninga HJ, Gottschal JC (1985) Amino acid fermentation and hydrogen transfer in mixed cultures. FEMS Microbiol Ecol 31: 261–269CrossRefGoogle Scholar
  29. Nanninga HJ, Drent WJ, Gottschal JC (1987) Fermentation of glutamate by Selenomonas acidaminophila sp.nov. Arch Microbiol 147: 152–157CrossRefGoogle Scholar
  30. Novozamsky I, Eck R van, Schouwenburg JC van, Walinga I (1974) Nitrogen determination in plant material by means of indophenolblue method. Neth J Agr Sci 22: 3–5Google Scholar
  31. Oberlies G, Fuchs G, Thauer RK (1980) Acetate thiokinase and the assimilation of acetate in Methanobacterium thermoautotrophicum. Arch Microbiol 128: 248–252CrossRefGoogle Scholar
  32. Ollivier B, Cordruwisch R, Lombardo A, Garcia J-L (1985) Isolation and characterization of Sporomusa acidovorans sp.nov., a methylotrophic homoacetogenic bacterium. Arch Microbiol 142: 307–310CrossRefGoogle Scholar
  33. Schink B, Pfennig N (1982) Propionigenium modestum gen.nov., sp.nov., a new strictly anaerobic nonsporing bacterium growing on succinate. Arch Microbiol 133: 209–216CrossRefGoogle Scholar
  34. Schleifer KH, Leuteritz M, Weiss N, Ludwig W, Kirchhof G, Seidel-Rüfer H (1990) Taxonomic study of anaerobic, Gramnegative, rod-shaped bacteria from breweries: emended description of Pectinatus cerevisiphilus and description of Pectinatus raffinosivorans gen.nov., sp.now., and Zymophilus paucivorans sp.nov. Int J Syst Bacteriol 40: 19–27CrossRefGoogle Scholar
  35. Soutschek E, Winter J, Schindler F, Kandler O (1984) Acetomicrobium flavidum, gen.nov., sp.nov., a thermophilic, anaerobic bacterium from sewage sludge, forming acetate, CO2 and H2 from glucose. Syst Appl Microbiol 5: 377–390CrossRefGoogle Scholar
  36. Stackebrandt E, Pohla H, Kroppenstedt R, Hippe H, Woese CR (1985) 16S rRNA analysis of Sporomusa, Selenomonas, and Megasphaera: on the phylogenetic origin of Gram-positive eubacteria. Arch Microbiol 143: 270–276CrossRefGoogle Scholar
  37. Stams AJM, Hansen TA (1984) Fermentation of glutamate and other compounds by Acidaminobacter hydrogenoformans gen.-nov. sp.nov., an obligate anaerobe isolated from black mud. Studies with pure cultures and mixed cultures with sulfate-reducing and methanogenic bacteria. Arch Microbiol 137: 329–337CrossRefGoogle Scholar
  38. Stams AJM, Kremer DR, Nicolay K, Weenk GH, Hansen TA (1984) Pathway of propionate formation in Desulfobulbus propionicus. Arch Microbiol 139: 167–173CrossRefGoogle Scholar
  39. Stams AJM, Veenhuis M, Weenk GH, Hansen TA (1983) Occurrence of polyglucose as a storage polymer in Desulfovibrio species and Desulfobulus propionicus. Arch Microbiol 136: 54–59CrossRefGoogle Scholar
  40. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41: 100–180PubMedPubMedCentralGoogle Scholar
  41. Touzel JP, Prensier G, Roustan JL, Thomas I, Dubourguier HC, Albagnac G (1988) Description of Methanothrix soehngenii and rejection of Methanothrix concilii as a synonym of Methanothrix soehngenii. Int J Syst Bacteriol 38: 30–36CrossRefGoogle Scholar
  42. Wildenauer FX, Winter J (1986) Fermentation of isoleucine and arginine by pure and syntrophic cultures of Clostridium sporogenes. FEMS Microbiol Ecol 38: 373–379CrossRefGoogle Scholar
  43. Winter J, Schindler F, Wildenauer FX (1987) Fermentation of alanine and glycine by pure and syntrophic cultures of Clostridium sporogenes. FEMS Microbiol Ecol 45: 153–161CrossRefGoogle Scholar
  44. Winter J, Wolfe R. S. (1980) Methane formation from fructose by syntrophic associations of Acetobacterium woodii and different strains of methanogens. Arch Microbiol 124: 73–79CrossRefGoogle Scholar
  45. Zeikus JG, Wolfe RS (1972) Methanobacterium thermoautotrophicus sp.n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109: 707–713PubMedPubMedCentralGoogle Scholar
  46. Zindel U, Freudenberg W, Reith M, Andreesen JR, Schnell J, Widdel F (1988) Eubacterium acidaminophilum sp.nov., a versatile amino acid degrading anaerobe producing or utilizing H2 or formate. Description and enzymatic studies. Arch Microbiol 150: 254–266CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Cheng Guangsheng
    • 1
  • Caroline M. Plugge
    • 1
  • Wim Roelofsen
    • 1
  • Frans P. Houwen
    • 1
  • Alfons J. M. Stams
    • 1
  1. 1.Department of MicrobiologyWageningen Agricultural UniversityWageningenThe Netherlands

Personalised recommendations