Advertisement

Archives of Microbiology

, Volume 157, Issue 2, pp 116–124 | Cite as

Isolation and characterization of Zymomonas mobilis mutants resistant to octadecyltrimethylammonium chloride, a detergent acting on hopanoid-producing bacteria

  • G. P. F. Michel
  • B. Neuß
  • C. H. Tappe
  • J. Baratti
Original Papers
  • 52 Downloads

Abstract

Growth of the hopanoid-producing bacterium Zymomonas mobilis was inhibited at low concentrations of the cationic detergent octadecyltrimethylammoniumchloride (OTAC). A relationship between sensitivity of Zymomonas mobilis to OTAC, presence of hopanoids and ethanol tolerance was postulated. Mutants resistant to OTAC were isolated from strains ZM1 and ZM4. They did not present any alteration of the hopanoid content and their squalene cyclases showed the same sensitity to OTAC as the parent enzymes. Resistance to OTAC paralleled pleiotropic effects including, enhanced accessibility of the membrane-bound alkaline phosphatase, important release of proteins from cells by Tris/HCl treatment, increased resistance to antibiotics and increased sensitivity to ethanol. In addition, OTACR mutants were also characterized by the synthesis or the overproduction of an outer membrane protein (F53) not detected on 2D-PAGE maps of parent strains and by a normal heat shock response. The role of hopanoids, heat shock proteins, protein F53 and membrane organization in ethanol tolerance is discussed.

Key words

OTAC resistant mutants Hopanoids Squalene cyclase Ethanol tolerance Outer membrane proteins Zymomonas mobilis 

Abbreviations

OTAC

octadecyltrimethylammoniumchloride

SLS

sodium lauryl sarcosinate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angus BL, Carey AM, Caron DA, Kropinski AMB, Hancock REW (1982) Outer membrane permeability in Pseudomonas aeruginosa: comparison of a wild-type with an antibiotic-supersusceptible mutant. Antimicrob Agents Chemother 21:299–309CrossRefGoogle Scholar
  2. Barrow KD, Grant-Collins J, Rogers PL, Smith GM (1983) Lipid composition of ethanol tolerant Zymomonas mobilis. Biochem Biophys Acta 753:324–330CrossRefGoogle Scholar
  3. Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234:466–468PubMedGoogle Scholar
  4. Bayer MH, Keck W, Bayer ME (1990) Localization of penicillin-binding protein 1b in Escherichia coli: immunoelectron microscopy and immunotransfer studies. J Bacteriol 172:125–135CrossRefGoogle Scholar
  5. Berger B, Carty CE, Ingram LO (1980) Alcohol-induced changes in the phospholipid molecular species of Escherichia coli. J Bacteriol 142:1040–1044PubMedPubMedCentralGoogle Scholar
  6. Bisseret P, Wolff G, Albrecht A-M, Tanaka T, Nakatani Y, Ourisson G (1983) A direct study of the cohesion of lecithin bilayers: the effect of hopanoids and dihydroxycarotenoids. Biochem Biophys Res Commun 110:320–324CrossRefGoogle Scholar
  7. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Physiol 37:911–917Google Scholar
  8. Bringer S, Härtner T, Poralla K, Sahm H (1985) Influence of ethanol on the hopanoid content and the fatty acid pattern in batch and continuous cultures of Zymomonas mobilis. Arch Microbiol 140:312–316CrossRefGoogle Scholar
  9. Carey VC, Ingram LO (1983) Lipid composition of Zymomonas mobilis. Effects of ethanol and glucose. J Bacteriol 154:1291–1300PubMedPubMedCentralGoogle Scholar
  10. Biano M, LaBivic A, Hirn M (1987) A method for the production of highly specific polyclonal antibodies. Anal Biochem 166:224–229CrossRefGoogle Scholar
  11. Enequist HG, Hirst TR, Harayama S, Hardy SJS, Randall LL (1981) Energy is required for maturation of exported proteins in Escherichia coli. Eur J Biochem 116:227–233CrossRefGoogle Scholar
  12. Filip C, Fletcher G, Wulff JL, Earhart CF (1973) Solubilization of the cytoplasmic membrane of Escherichia coli by the ionic detergent sodium lauryl sarcosinate. J Bacteriol 115:717–722PubMedPubMedCentralGoogle Scholar
  13. Flesch G, Rohmer M (1987) Growth inhibition of hopanoid synthesizing bacteria by squalene cyclase inhibitors. Arch Microbiol 147:100–104CrossRefGoogle Scholar
  14. Flesch G, Rohmer M (1989) Prokaryotic triterpenoids. A novel hopanoid from the ethanol-producing bacterium Zymomonas mobilis. Biochem J 262:673–675CrossRefGoogle Scholar
  15. Foulds J (1976) tolF locus in Escherichia coli: chromosomal location and relationships to loci cmlB and tolD. J Bacteriol 128:604–608PubMedPubMedCentralGoogle Scholar
  16. Hancock REW (1984) Alterations of outer membrane permeability. Ann Rev Microbiol 38:237–264CrossRefGoogle Scholar
  17. Hayashida S, Ohta K (1980) Effects of phosphatidyl-choline or ergosteryloleate on physiological properties of Saccharomyces cerevisiae. Agric Biol Chem 114:2561–2567Google Scholar
  18. Ingram LO (1976) Adaptation of membrane lipids to alcohol. J Bacteriol 125:670–678PubMedPubMedCentralGoogle Scholar
  19. Ingram LO, Vreeland NS (1980) Differential effects of ethanol and hexanol on the E. coli cell envelope. J Bacteriol 144:481–488PubMedPubMedCentralGoogle Scholar
  20. Ingram LO, Buttke TM (1984) Effects of alcohols on micro-organisms. Adv Microb Physiol 25:254–290Google Scholar
  21. Irvin RT, Mac Alister TJ, Costerton JW (1981) Tris(hydroxymethyl)aminomethane buffer modification of Escherichia coli outer membrane permeability. J Bacteriol 145:1397–1403PubMedPubMedCentralGoogle Scholar
  22. Ishidate K, Creeger ES Zrike J, Deb S, Glauner B, Mac Alister TJ, Rothfield LI (1986) Isolation of differentiated membrane domains from Escherichia coli and Salmonella typhimurium, including a fraction containing attachment sites between the envelope. J Biol Chem 261:428–443PubMedGoogle Scholar
  23. Jones RP (1989) Biological principles for the effects of ethanol. Enzyme Microb Technol 11:130–153CrossRefGoogle Scholar
  24. Kannenberg E, Poralla K, Blume A (1980) A hopanoid from the thermophilic Bacillus acidocaldarius condenses membranes. Naturwissenschaften 67:458–459CrossRefGoogle Scholar
  25. Kellenberger E (1990) The “Bayer bridges” confronted with results from improved electron microscopy methods. Mol Microbiol 4:697–705CrossRefGoogle Scholar
  26. Laemmli UK (1970) Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  27. Michel GPF, Azoulay T, Starka J (1985) Ethanol effect on the membrane protein pattern of Zymomonas mobilis. Ann Inst Pasteur 136A:173–179CrossRefGoogle Scholar
  28. Michel GPF, Starka J (1986) Effect of ethanol and heat stresses on the protein pattern of Zymomonas mobilis. J Bacteriol 165:1040–1042CrossRefGoogle Scholar
  29. Michel GPF, Starka J (1987) Preferential synthesis of stress proteins in stationary Zymomonas mobilis cells. FEMS Microbiol Lett 43:361–365CrossRefGoogle Scholar
  30. Michel GPF, Baratti J (1979) Phosphate-irrepressible alkaline phosphatase of Zymomonas mobilis. J Gen Microbiol 135:453–460Google Scholar
  31. Misra R, Benson SA (1989) A novel mutation cog, which results in production of a new porin protein (OmpG) of Escherichia coli K12. J Bacteriol 171:4105–4111CrossRefGoogle Scholar
  32. Neidhardt FC, VanBogelen RA, Vaughn V (1984) The genetics and regulation of heat shock proteins. Ann Rev Genet 18:295–329CrossRefGoogle Scholar
  33. Ochs D, Tappe CH, Gärtner P, Kellner R, Poralla K (1990) Properties of purified squalene-hopene cyclase from Bacillus acidocaldarius. Eur J Biochem 194:75–80CrossRefGoogle Scholar
  34. O'Farrell PH (1975) High resolution two dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021PubMedPubMedCentralGoogle Scholar
  35. Ohta K, Supanwong K, Hayashida S, (1981) Environmental effects on ethanol tolerance of Zymomonas mobilis. J Ferment Technol 59:435–439Google Scholar
  36. Osman YA, Ingram LO (1985) Mechanism of ethanol inhibition of fermentation in Zymomonas mobilis CP4. J Bacteriol 164:173–180PubMedPubMedCentralGoogle Scholar
  37. Ourisson G, Rohmer M, Poralla K (1987) Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Ann Rev Microbiol 41:301–333CrossRefGoogle Scholar
  38. Poralla K, Kannenberg E, Blume A (1980) A glycolipid containing hopane isolated from the acidophilic Bacillus acidocaldarius, has a cholesterol-like function in membranes. FEBS Lett 113:107–110CrossRefGoogle Scholar
  39. Poralla K, Härtner T, Kannenberg E (1984) Effect of temperature and pH on the hopanoid content of Bacillus acidocaldarius. FEMS Microbiol Lett 23:253–256CrossRefGoogle Scholar
  40. Rogers PL Lee KJ, Skotnicki ML, Tribe DE (1982) Ethanol production by Zymomonas mobilis. Adv Biochem Eng 23:37–84Google Scholar
  41. Rohmer M, Bouvier-Nave P, Ourisson G (1984) Distribution of hopanoid triterpenes in procaryotes. J Gen Microbiol 130:1137–1150Google Scholar
  42. Schaecterle GR, Pollach RL (1975) A simplified method for the quantitative assay of protein in biological material. Anal Biochem 51:654–655CrossRefGoogle Scholar
  43. Schmidt A, Bringer-Meyer S, Poralla K, Sahm H (1986) Effects of alcohols and temperature on the hopanoid content of Zymomonas mobilis. Appl Microbiol Biotechnol 25:32–36CrossRefGoogle Scholar
  44. Schulenberg-Schell H, Neuß B, Sahm H (1989) Quantitative determination of various hopanoids in microorganisms. Anal Biochem 181:120–124CrossRefGoogle Scholar
  45. Tahara Y, Ogawa Y, Sakakibara T, Yamada Y (1985) Phosphatidylethanolamine N-methyl-transferase from Zymomonas mobilis. Purification and characterization. Agric Biol Chem 50:257–259Google Scholar
  46. Tahara Y, Yuhara H, Yamada Y (1988) Distribution of tetrahydroxyhopane in the membrane fractions of Zymomonas mobilis. Agric Biol Chem 52:607–609Google Scholar
  47. Thomas DS, Hossack JA, Rose AH (1978) Plasma membrane lipid composition and ethanol tolerance in Saccharomyces cerevisae. Arch Microbiol 117:239–245CrossRefGoogle Scholar
  48. Tornabene TG, Holzer G, Bittner AS, Grohman K (1982) Characterization of the total extractable lipids of Z. mobilis. Can J Microbiol 28:1107–1118CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • G. P. F. Michel
    • 1
  • B. Neuß
    • 2
  • C. H. Tappe
    • 3
  • J. Baratti
    • 1
  1. 1.Laboratoire de Chimie BactérienneCNRSMarseille Cedex 9France
  2. 2.Institut für Biotechnology 1 des Forschungszentrums Jülich GmbHJülichGermany
  3. 3.Mikrobiologie IBotanisches InstitutTübingenGermany

Personalised recommendations