Advertisement

Archives of Microbiology

, Volume 153, Issue 6, pp 607–613 | Cite as

The role of trehalose as a substitute for nitrogen-containing compatible solutes (Ectothiorhodospira halochloris)

  • Erwin A. Galinski
  • Ruth M. Herzog
Original Papers

Abstract

The halophilic phototrophic bacterium Ectothiorhodospira halochloris is able to synthesize both nitrogen-containing (betaine, ectoine) and nitrogen-free (trehalose) compatible solutes. In the absence of external ammonium and under nitrogen-limited growth conditions ectoine was metabolized and trehalose partly replaced betaine. The cytoplasmic trehalose concentration did not exceeded 0.5 mol/kg water (approx. 30% of total compatible solutes). A decreasing content of betaine in cells growing under nitrogen limitation is a result of decreased biosynthesis. Apparently, the betaine pool cannot be used as a nitrogen source, not even in a situation of total nitrogen depletion.

Key words

Anaerobic phototrophic bacteria Halophilic eubacteria Osmoadaptation Betaine Ectoine Trehalose Compatible solutes Ectothiorhodospira halochloris 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BrownAD (1976) Microbial water stress. Bacteriol Rev 40: 803–846Google Scholar
  2. Galinski EA (1986) Salzadaptation durch kompatible Solute bei halophilen phototrophen Bakterien. Ph D thesis, University of BonnGoogle Scholar
  3. GalinskiEA, TrüperHG (1982) Betaine, a compatible solute in the extremely halophilic phototrophic bacterium Ectothiorhodospira halochloris. FEMS Microbiol Lett 13: 357–360Google Scholar
  4. GalinskiEA, PfeifferHP, TrüperHG (1985) 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid, a novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira. Eur J Biochem 149: 135–139Google Scholar
  5. HerzogRM, GalinskiEA, TrüperHG (1990) Degradation of the compatible solute trehalose in Ectothiorhodospira halochloris: isolation and characterization of trehalase. Arch Microbiol 153: 600–606Google Scholar
  6. ImhoffJF, TrüperHG (1977) Ectothiorhodospira halochloris sp. nov., a new extremely halophilic phototrophic bacterium containing bacteriochlorophyll b. Arch Microbiol 114: 115–121Google Scholar
  7. KromMD (1980) Spectrophotometric determination of ammonia: A study of a modified Berthelot reaction using salicylate and dichloroisocyanurate. Analyst 105: 303–316Google Scholar
  8. LanyiJK (1974) Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 38: 272–290Google Scholar
  9. LawJH, SlepeckyRA (1961) Assay of poly-β-hydroxybutyric acid. J Bacteriol 82: 33–36Google Scholar
  10. LoewusFA (1952) Improvement in the anthron method for determination of carbohydrate. Anal Chem 24: 219Google Scholar
  11. LowryOH, RosebroughNJ, FarrAL, RandallRF (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275Google Scholar
  12. MackayMA, NortonRS, BorowitzkaLJ (1984) Organic osmoregulatory solutes in cyanobacteria. J Gen Microbiol 130: 2177–2191Google Scholar
  13. MohammadFAA, ReedRH, StewartWDP (1983) The halophilic cyanobacterium Synechocystis DUN 52 and its osmotic responses. FEMS Microbiol Lett 16: 287–290Google Scholar
  14. ReedRH, RichardsonDL, WarrSRC, StewartWDP (1984) Carbohydrate accumulation and osmotic stress in cyanobacteria. J Gen Microbiol 130: 1–4Google Scholar
  15. ReistadR (1970) On the composition and nature of the bulk protein of extremely halophilic bacteria. Arch Mikrobiol 71: 353–360Google Scholar
  16. SchmidtK, Liaen-JensenS, SchlegelHG (1963) Die Carotinoide der Thiorhodaceae. I. Okenon als Hauptcarotinoid von chromatium okenii Perty. Arch Mikrobiol 46: 117–126Google Scholar
  17. StumpfDK (1984) Quantitation and purification of quarternary ammonium compounds from halophyte tissue. Plant Physiol 75: 273–274Google Scholar
  18. SutherlandIW, WilkinsonJF (1971) Chemical extraction methods of microbial cells. In: NorrisJR, RibbonsDW (eds) Methods in microbiology, vol 5 B. Academic Press, London, pp 345–384Google Scholar
  19. TakacsFP, MatulaTI, l MacLeodRA (1964) Nutrition and metabolism of marine bacteria. XIII. Intracellular concentrations of sodium and potassium ions in a marine pseudomonad. J Bacteriol 87: 510–518Google Scholar
  20. TrüperHG, GalinskiEA (1986) Concentrated brines as habitats for microorganisms. Experientia 42: 1182–1187Google Scholar
  21. Tschichholz I, Trüper HG (1990) Fate of compatible solutes during dilution stress in Ectothiorhodospira halochloris. FEMS Microbiology Ecology (in press)Google Scholar
  22. VialleJ, KoloskyM, RoccaJL (1981) Determination of betaine in sugar and wine by liquid chromatography. J Chromatog 204: 429–435Google Scholar
  23. VisentinLP, ChowC, MathesonAT, YaguchiM, RollinF (1972) Halobacterium cutirubrum ribosomes. Properties of the ribosomal proteins and ribonucleic acid. Biochem J 130: 103–110Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Erwin A. Galinski
    • 1
  • Ruth M. Herzog
    • 1
  1. 1.Institut für Mikrobiologie und Biotechnologie der Universität BonnBonn 1Federal Republic of Germany

Personalised recommendations