Advertisement

Archives of Microbiology

, Volume 153, Issue 6, pp 600–606 | Cite as

Degradation of the compatible solute trehalose in Ectothiorhodospira halochloris: isolation and characterization of trehalase

  • Ruth M. Herzog
  • Erwin A. Galinski
  • Hans G. Trüper
Original Papers

Abstract

Trehalase, which hydrolyzes the disaccharide trehalose to α-d-glucose was isolated and partially purified (124-fold) from the phototrophic halo-alkaliphilic bacterium Ectothiorhodospira halochloris. The molecular mass was determined to be 480,000 and the isoelectric point pH 5.6. Temperature optimum was found to be 40°C and the pH-optimum 7.8–8.1. In spite of its high Km-value of 0.5 M, trehalase of E. halochloris was shown to be specific for trehalose. Trehalase is activated by phosphate which is, however, not involved in the reaction mechanism. The enzyme is activated by the compatible solute betaine and inhibited by salts. In the presence of betaine the Km-value is lowered from 0.5 M to 0.16 M; moreover, betaine partially protects enzymatic activity from salt inhibition. The findings indicate that betaine might regulate the trehalose level in the cells by affecting trehalase activity.

Key words

Ectothiorhodospira halochloris Osmoregulation Betaine Phototrophic bacteria Haloalkaliphilic bacteria Trehalase Trehalose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BelocopitowE, MaréchalLR (1970) Trehalose phosphorylase from Euglena gracilis. Biochim Biophys Acta 198:151–154Google Scholar
  2. BergmeyerHU (1974) Methods of enzymatic analysis, vol VI. Verlag Chemie, Weinheim, pp 163–198Google Scholar
  3. BodeR, BirnbaumD (1986) Threonine dehydratase activity from several yeast species is activated and affected by phosphate. FEMS Microbiol Lett 37:189–192Google Scholar
  4. BoosW, EhmannU, BremerE, MeddendorfA, PostmaP (1987) Trehalase of Escherichia coli. J Biol Chem 262:13212–13218Google Scholar
  5. BradfordMH (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254Google Scholar
  6. BrownAD (1976) Microbial water stress. Bacteriol Rev 40:803–846Google Scholar
  7. CollinsKD, MashabaughMW (1985) The Hofmeister effect and behaviour of water at interfaces. Quarterly Rev Biophys 18: 323–422Google Scholar
  8. CroweJH, CroweLM, ChapmanD (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701–703Google Scholar
  9. Cruz MartinM, DiazLA, ManzanalMB, HardissonC (1986) Role of trehalose in spores of Streptomyces. FEMS Microbiol Lett 35:45–54Google Scholar
  10. ElbeinAD (1974) The metabolism of α,α-trehalose. Adv Carbo Chem Biochem 30:227–256Google Scholar
  11. FriedenC (1970) Kinetic aspects of regulation of metabolic processes. J Biol Chem 245:5788–5799Google Scholar
  12. GalinskiEA, HerzogRM (1990) The role of trehalose as a substitute for N-containing compatible solutes (Ectothiorhodospira halochloris). Arch Microbiol 153:607–613Google Scholar
  13. GalinskiEA, TrüperHG (1982) Betaine, a compatible solute in the extremely halophilic phototrophic bacterium Ectothiorhodospira halochloris. FEMS Microbiol Lett 13:357–360Google Scholar
  14. GalinskiEA, PfeifferHP, TrüperHG (1985) 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid. A novel cyclic amino acid from the halophilic phototrophie bacteria of the genus Ectothiorhodospira. Eur J Biochem 149:135–139Google Scholar
  15. ImhoffJF, TrüperHG (1977) Ectothiorhodospira halochloris sp. nov., a new extremely halophilic phototrophic bacterium containing bacteriochlorophyll b. Arch Microbiol 114:115–121Google Scholar
  16. KemekuraM (1986) Production and function of enzymes of eubacterial halophytes. FEMS Microbiol Rev 39:145–150Google Scholar
  17. LarsenPI, SydnesLK, LandfaldB, StromAR (1987) Osmoregulation in Escherichia coli by accumulation of organic osmolytes: betaines, glutamic acid and trehalose. Arch Microbiol 147: 1–7Google Scholar
  18. LopezMF, TorreyJG (1985) Purification and properties of trehalase in Frankia ArI3. Arch Microbiol 143:209–215Google Scholar
  19. MackayMA, NortonRS, BorowitzkaLJ (1984) Organic osmoregulatory solutes in cyanobacteria. J Gen Microbiol 130: 2177–2191Google Scholar
  20. MaurerJH (1971) Disc electrophoresis and related techniques of polyacrylamid gel electrophoresis. Walter de Gruyter, Berlin New YorkGoogle Scholar
  21. PollardA, Wyn JonesRG (1979) Enzyme activities in concentrated solutions of glycinebetaine and other solutes. Planta 144:291–298Google Scholar
  22. ReedRH, RichardsonDL, WarrSRC, StewartWDP (1984) Carbohydrate accumulation and osmotic stress in cyanobacteria. J Gen Microbiol 130:1–4Google Scholar
  23. RudolphAS, CroweJH (1985) Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline. Cryobiology 22:367–377Google Scholar
  24. StreeterJG (1982) Enzymes of sucrose, maltose and α,α-trehalose catabolism in soybean root nodules. Planta 155:112–115Google Scholar
  25. TheveleinJM (1984) Regulation of trehalose mobilization in funghi. Microbiol Rev 48:42–59Google Scholar
  26. TrüperHG, GalinskiEA (1986) Concentrated brines as habitats for microorganisms. Experientia 42:1182–1187Google Scholar
  27. Tschichholz I, Trüper HG (1990) Fate of compatible solutes during dilution stress in Ectothiorhodospira halochloris. FEMS Microbiol Ecol (in press)Google Scholar
  28. VanLaereA (1989) Trehalose, reserve and/or stress metabolite. FEMS Microbiol Rev 63:201–210Google Scholar
  29. WarrSRC, ReedRH, StewartWDP (1984) Osmotic adjustment of cyanobacteria: the effects of NaCl, KCl, sucrose and glycine-betaine on glutamine synthetase activity in a marine and a halotolerant strain. J Gen Microbiol 130:2169–2175Google Scholar
  30. YanceyPH, ClarkME, HandSC, BowlusRD, SomeroGN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Ruth M. Herzog
    • 1
  • Erwin A. Galinski
    • 1
  • Hans G. Trüper
    • 1
  1. 1.Institut für Mikrobiologie der Universität BonnBonn 1Federal Republic of Germany

Personalised recommendations