Archives of Microbiology

, Volume 153, Issue 6, pp 550–560 | Cite as

Structural and compositional analyses of the phycobilisomes of Synechococcus sp. PCC 7002. Analyses of the wild-type strain and a phycocyanin-less mutant constructed by interposon mutagenesis

  • Donald A. Bryant
  • Robert de Lorimier
  • Gerard Guglielmi
  • S. Edward StevensJr
Original Papers


The phycobilisomes and phycobiliproteins of Synechococcus sp. PCC 7002 wild-type strain PR6000 have been isolated and characterized. The hemidiscoidal phycobilisomes of strain PR6000 are composed of eleven different polypeptides: phycocyanin α and β subunits; allophycocyanin α and β subunits; α subunit of allophycocyanin B; the allophycocyanin β-subunit-like polypeptide of Mr 18 000; the linker phycobiliprotein of Mr 99 000; and non-chromophore-carrying linker polypeptides of Mr 33 000, 29 000, 9000, and 8000. Several of these polypeptides were purified to homogeneity and their amino acid compositions and amino-terminal amino acid sequences were determined. Analyses of the phycobiliproteins of Synechococcus sp. PCC 7002 were greatly facilitated by comparative studies performed with a mutant strain, PR6008, constructed to be devoid of the phycocyanin α and β subunits by recombinant DNA techniques and transformation of strain PR6000. The absence of phycocyanin did not greatly affect the allophycocyanin content of the mutant strain but caused the doubling time to increase 2–7-fold depending upon the light intensity at which the cells were grown. Although intact phycobilisome cores could not be isolated from this mutant, it is probable that functionally intact cores do exist in vivo.

Key words

Phycobilisomes Phycobiliproteins Cyanobacterium Synechococcus sp. PCC 7002 Interposon mutagenesis 

Abbreviations used


polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate


two-dimensional gel electrophoresis in which the first dimension consisted of isoelectric focusing in the presence of 8.0 M urea in the pH range 4–6 and the second dimension consisted of electrophoresis in the presence of sodium dodecylsulfate. The nomenclature employed for the phycobiliprotein subunits and linker polypeptides is that defined by Glazer (1985)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AndersonLK, EiserlingFA (1986) Asymmetrical core structure in phycobilisomes of the cyanobacterium Synechocystis 6701. J Mol Biol 191: 441–451Google Scholar
  2. AndersonLK, RaynerMC, EiserlingFA (1984) Ultra-violet mutagenesis of Synechocystis sp. 6701: mutations in chromatic adaptation and phycobilisome assembly. Arch Microbiol 138: 237–243Google Scholar
  3. BelknapWR, HaselkornR (1987) Cloning and light regulation of expression of the phycocyanin operon of the cyanobacterium Anabaena. EMBO J 6: 871–884Google Scholar
  4. BoussibaS, RichmondAE (1980) C-Phycocyanin as a storage protein in the blue-green alga Spirulina platensis. Arch Microbiol 125: 143–147Google Scholar
  5. BruceD, BrimbleS, BryantDA (1989) State transitions in a phycobilisome-less mutant of the cyanobacterium Synechococcus sp. PCC 7002. Biochim Biophys Acta 974: 66–73Google Scholar
  6. BryantDA (1987) The cyanobacterial photosynthetic apparatus: comparison to those of higher plants and photosynthetic bacteria. In: PlattT, LiWKW (eds) Photosynthetic picoplankton. Canadian Bulletin of Fisheries and Aquatic Sciences, vol 214. Dept. of Fisheries and Oceans Ottawa, Canada, pp 423–500Google Scholar
  7. BryantDA (1988) Genetic analysis of phycobilisome biosynthesis, assembly, and function in the cyanobacterium Synechococcus sp. PCC 7002. In: StevensSEJr, BryantDA (eds) Light-energy transduction in photosynthesis: higher plant and bacterial models. American Soc Plant Physiologists, Rockville, MD, pp 62–90Google Scholar
  8. BryantDA (1990) Phycobilisomes of Synechococcus sp. PCC 7002: progress towards a complete structural and functional analysis via molecular genetics. In: BogoradL, VasilIK (eds) Cell culture and somatic cell genetics of plants, vol 7: The molecular biology of plastids and mitochondria. Academic Press, New York (in press)Google Scholar
  9. BryantDA, deLorimierR, GuglielmiG, StirewaltVL, CantrellA, StevensSEJr (1987) The cyanobacterial photosynthetic apparatus: a structural and functional analysis employing molecular genetics. In: BigginsJ (ed) Progress in photosynthesis research, vol IV. Martinus Nijhoff, Dordrecht, pp 749–755Google Scholar
  10. BryantDA, GlazerAN, EiserlingFA (1976) Characterization and structural properties of the major biliproteins of Anabaena sp. Arch Microbiol 110: 61–75Google Scholar
  11. BryantDA, GuglielmiG, Tandeau de MarsacN, CastesA-M, Cohen-BazireG (1979) The structure of cyanobacterial phycobilisomes: a model. Arch Microbiol 123: 113–127Google Scholar
  12. BryantDA, Tandeau de MarsacN (1988) Isolation of genes encoding components of the photosynthetic apparatus. Methods Enzymol 167: 755–765Google Scholar
  13. BuzbyJS, PorterRD, StevensSEJr (1983) Plasmid transformation in Agmenellum quadruplicatum PR-6: Construction of biphasic plasmids and characterization of their transformation properties. J Bacteriol 154: 1446–1450Google Scholar
  14. BuzbyJS, PorterRD, StevensSEJr (1985) Expression of the Escherichia coli lacZ gene on a plasmid vector in a cyanobacterium. Science 230: 805–807Google Scholar
  15. Cohen-BazireG, BeguinS, RimonS, GlazerAN, BrownDM (1977) Physico-chemical and immunological properties of allophycocyanins. Arch Microbiol 111: 225–238Google Scholar
  16. Cohen-BazireG, BryantDA (1982) Phycobilisomes: composition and structure. In: CarnNG, WhittonBA (eds) The biology of the cyanobacteria. Blackwell Scientific, Oxford, pp 143–190Google Scholar
  17. DagertM, EhrlichSD (1979) Prolonged incubation in calcium chloride improves the competence of E. coli cells. Gene 6: 23–28Google Scholar
  18. deLorimierR, BryantDA, PorterRD, LiuW-Y, JayE, StevensSEJr (1984) Genes for the α and β subunits of phycocyanin. Proc Natl Acad Sci USA 81: 7946–7950Google Scholar
  19. deLorimierR, GuglielmiG, BryantDA, StevensSEJr (1990a) Structure and mutation of a gene encoding a Mr 33000 phycocyanin-associated linker polypeptide. Arch Microbiol 153: 541–549Google Scholar
  20. de Lorimier R, Bryant DA, Stevens SE Jr (1990 b) Genetic analysis of a 9 kDa phycocyanin-associated linker polypeptide. Biochim Biophys Acta (in press)Google Scholar
  21. DukeCS, CezeauxA, AllenMM (1989) Changes in polypeptide composition of Synechocystis sp. strain 6308 phycobilisomes induced by nitrogen starvation. J Bacteriol 171: 1960–1966Google Scholar
  22. ElmorjaniK, ThomasJ-C, SebbanP (1986) Phycobilisomes of wild type and pigment mutants of the cyanobacterium Synechocystis PCC 6803. Arch Microbiol 146: 186–191Google Scholar
  23. FontanaA, DalzoppoD, GrandiC, ZamboninM (1981) Chemical cleavage of tryptophanyl and tyrosyl peptide bonds via oxidative halogenation mediated by o-iodosobenzoic acid. Biochemistry 20: 6997–7004Google Scholar
  24. GanttE (1981) Phycobilisomes. Annu Rev Plant Physiol 32: 327–347Google Scholar
  25. GanttE, CunninghamFXJr, LipschultzCA, MimuroM (1988) N-terminus conservation in the terminal pigment of phycobilisomes from a prokaryotic and eukaryotic alga. Plant Physiol 86: 996–998Google Scholar
  26. GardnerEE, StevensSEJr, FoxJL (1980) Purification and characterization of the C-phycocyanin from Agmenellum quadruplicatum. Biochim Biophys Acta 624: 187–195Google Scholar
  27. GingrichJC, LundellDJ, GlazerAN (1983) Core substructure in cyanobacterial phycobilisomes. J Cell Biochem 22: 1–14Google Scholar
  28. GlazerAN (1974) Phycocyanins: structure and function. Photochem Photobiol Rev 1: 71–115Google Scholar
  29. GlazerAN (1982) Phycobilisomes: Structure and dynamics. Annu Rev Microbiol 36: 173–198Google Scholar
  30. GlazerAN (1984) Phycobilisome. A macromolecular complex optimized for light energy transfer. Biochim Biophys Acta 768: 29–51Google Scholar
  31. GlazerAN (1985) Light harvesting by phycobilisomes. Annu Rev Biophys Biophys Chem 14: 47–77Google Scholar
  32. GlazerAN (1987) Phycobilisomes: assembly and attachment. In: FayP, VanBaalenC (eds) The cyanobacteria. Elsevier Biomedical, Amsterdam, pp 69–94Google Scholar
  33. GlazerAN (1988) Phycobiliproteins. Meth Enzymol 167: 291–303Google Scholar
  34. GlazerAN, BryantDA (1975) Allophycocyanin B (559-1 671, 618 nm). A new cyanobacterial phycobiliprotein. Arch Microbiol 104: 15–22Google Scholar
  35. GlazerAN, WilliamsRC, YamanakaG, SchachmanHK (1979) Characterization of cyanobacterial phycobilisomes in zwitterionic detergents. Proc Natl Acad Sci USA 76: 6162–6166Google Scholar
  36. GrossmanAR, LemauxPG, ConleyPB, BrunsBU, AndersonLK (1988) Characterization of phycobiliprotein and linker polypeptide genes in Fremyella diplosiphon and their regulated expression during complementary chromatic adaptation. Photosyn Res 17: 23–56Google Scholar
  37. KallaSR, LindLK, GustafssonP (1989) Genetic analysis of phycobilisome mutants in the cyanobacterium Synechococcus species PCC 6301. Mol Microbiol 3: 339–347Google Scholar
  38. LaemmliUK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond) 227: 680–685Google Scholar
  39. LundellDJ, GlazerAN (1981) Allophycocyanin B. A common β subunit in Synechococcus allophycocyanin B (559-2 670 nm) and allophycocyanin (559-3 650 nm). J Biol Chem 256: 12600–12606Google Scholar
  40. LundellDJ, GlazerAN (1983) Molecular architecture of a light-harvesting antenna. Structure of the 18 S core-rod subassembly of the Synechococcus 6301 phycobilisome. J Biol Chem 258: 894–901Google Scholar
  41. MacCollR, Guard-FriarD (1987) Phycobiliproteins. CRC Press, Boca RatonGoogle Scholar
  42. ManiatisT, FritschEF, SambrookJ (1982) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  43. MaxsonP, SauerK, ZhouJ, BryantDA, GlazerAN (1989) Spectroscopic studies of cyanobacterial phycobilisomes lacking core polypeptides. Biochim Biophys Acta 977: 40–51Google Scholar
  44. O'FarrellPH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250: 4007–4021Google Scholar
  45. PilotTJ, FoxJL (1984) Cloning and sequencing of the genes encoding the α and β subunits of C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum. Proc Natl Acad Sci USA 81: 6983–6987Google Scholar
  46. PorterRD (1986) Transformation in cyanobacteria. CRC Crit Rev Microbiol 13: 111–132Google Scholar
  47. RapsS, KyciaJH, LedbetterMC, SiegelmanHW (1985) Light intensity adaptation and phycobilisome composition of Microcystis aeruginosa. Plant Physiol 79: 983–987Google Scholar
  48. RumbeliR, WirthM, SuterF, ZuberH, (1987) The phycobiliprotein 559-4 of the allophycocyanin core from the cyanobacterium Mastigocladus laminosus. Biol Chem Hoppe-Seyler 368: 1–9Google Scholar
  49. SchirmerT, HuberR, SchneiderM, BodeW, MillerM, HackertML (1986) Crystal structure analysis and refinement at 2.5 Å of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum. The molecular model and its implications for light-harvesting J Mol Biol 188: 651–676Google Scholar
  50. SchirmerT, BodeW, HuberR (1987) Refined three dimensional structures of two cyanobacterial C-phycocyanins at 2.1 and 2.5 Å resolution. A common principle of phycobilin-protein interaction. J Mol Biol 196: 677–695Google Scholar
  51. SchroederWA, SheltonJB, SheltonJR (1969) An examination of conditions for the cleavage of polypeptide chains with cyanogen bromide: application to catalase. Arch Biochem Biophys 130: 551–556Google Scholar
  52. SiegelmanHW, WieczorekGA, TurnerBC (1965) Preparation of calcium phosphate for protein chromatography. Anal Biochem 13: 402–404Google Scholar
  53. SouthernEM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–517Google Scholar
  54. StevensSEJr, PattersonCOP, MyersJ (1973) The production of hydrogen peroxide by blue-green algae: a survey. J Phycol 9: 427–430Google Scholar
  55. SwankRT, MunkresKD (1971) Molecular weight analysis of oligopeptides by electrophoresis in polyacrylamide gel with sodium dodecyl sulfate. Anal Biochem 39: 462–477Google Scholar
  56. Tandeau de MarsacN, Cohen-BazireG (1977) Molecular composition of cyanobacterial phycobilisomes. Proc Natl Acad Sci USA 74: 1635–1639Google Scholar
  57. Tandeau de MarsacN, MazelD, DamervalT, GuglielmiG, CapuanoV, HoumardJ (1988) Photoregulation of gene expression in the filamentous cyanobacterium Calothrix sp. PCC 7601: light-harvesting complexes and cell differentiation. Photosyn Res 18: 99–132Google Scholar
  58. WehrmeyerW (1983) Phycobiliproteins and phycobiliprotein organization in the photosynthetic apparatus of cyanobacteria, red algae, and cryptophytes. In: JensenU, FairbrothersDE (eds) Proteins and nucleic acids in plant systematics. Springer, Berlin Heidelberg New York, pp 143–167Google Scholar
  59. YamanakaG, GlazerAN (1980) Dynamic aspects of phycobilisome structure. Phycobilisome turnover during nitrogen starvation in Synechococcus sp. Arch Microbiol 124: 39–47Google Scholar
  60. YamanakaG, GlazerAN (1981) Dynamic aspects of phycobilisome structure: modulation of phycocyanin content of Synechococcus phycobilisomes. Arch Microbiol 130: 23–30Google Scholar
  61. YamanakaG, GlazerAN, WilliamsRC (1978) Cyanobacterial phycobilisomes. Characterization of the phycobilisomes of Synechococcus sp. 6301. J Biol Chem 253: 8303–8310Google Scholar
  62. ZilinskasBA, GreenwaldLS (1986) Phycobilisome structure and function. Photosyn Res 10: 7–35Google Scholar
  63. ZuberH (1987) The structure of light-harvesting pigment-protein complexes. In: BarberJ (ed) The light reactions. Elsevier Biomedical, Amsterdam, pp 197–259Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Donald A. Bryant
    • 1
  • Robert de Lorimier
    • 1
  • Gerard Guglielmi
    • 1
  • S. Edward StevensJr
    • 1
  1. 1.Department of Molecular and Cell BiologyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations