Archives of Microbiology

, Volume 158, Issue 4, pp 287–293 | Cite as

Comparative systematic study on “Spirillum” 5175, Campylobacter and Wolinella species

Description of “Spirillum” 5175 as Sulfurospirillum deleyianum gen. nov., spec. nov.
  • Wolfram Schumacher
  • Peter M. H. Kroneck
  • Norbert Pfennig
Original Papers


Physiological tests, redetermination of G+C values with HPLC and DNA-DNA hybridization were used to determine the taxonomic affiliation of “Spirillum” 5175. This facultatively sulfur-reducing bacterium was compared to the type strains of the phenotypically most similar species Wolinella succinogenes and Campylobacter sputorum biovar bubulus. In addition to morphology, the following physiological properties were in common: use of elemental sulfur, nitrate, nitrite, aspartate, fumarate or malate as electron acceptor for growth with hydrogen or formate under anoxic conditions; microaerobic growth with 2% (v/v) oxygen. The G+C content of Wolinella succinogenes (51.8 mol%) and Campylobacter sputorum biovar bubulus (30.4 mol%) differs about 10 mol% from the G+C content of “Spirillum” 5175 (40.6 mol%). No significant DNA homology could be detected between the three strains. These differences excluded affiliation of “Spirillum” 5175 with the genera Wolinella or Campylobacter despite phenotypic similarities. On the basis of our results and DNA-rRNA hybridization studies by other authors, we established the new genus Sulfurospirillum for the freeliving Campylobacter-like bacteria “Spirillum” 5175 and “Campylobacter spec.” DSM 806. Strain “Spirillum” 5175 is described as the type strain of the new genus and species Sulfurospirillum deleyianum.

Key words

Reduction of sulfur Sulfide oxidation Microaerobic growth “Spirillum” 5175 Sulfurospirillum deleyianum Wolinella succinogenes Campylobacter spec 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bokranz MJ, Katz J, Schröder I, Roberton AM, Kröger A (1983) Energy metabolism and biosynthesis of Vibrio succinogenes growing with nitrate or nitrite as terminal electron acceptor. Arch Microbiol 135: 36–41Google Scholar
  2. Boltz DF, Taras MJ (1978) Nitrogen. In: Boltz DF, Howell JA (eds) Colorimetric determination of nonmetals. Chemical analysis, vol 8, 2nd edn. John Wiley & Sons, New York Chichester Brisbane, pp 197–251Google Scholar
  3. Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14: 454–458Google Scholar
  4. Collins MD, Widdel F (1986) Respiratory quinones of sulphate-reducing and sulphur-reducing bacteria: a systematic investigation. Syst Appl Microbiol 8: 8–18Google Scholar
  5. De Ley J (1978) Modern molecular methods in bacterial taxonomy: evaluation, application, prospects. In: Station de pathologie végétale et phytobactériologie (eds) Proceedings of the 4th International Conference of Plant Pathogenic Bacteria, Angers, vol 1. Gibert-Clarey, Tours, France, pp 347–357Google Scholar
  6. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12: 133–142Google Scholar
  7. De Vries W, Niekus HGD, Boellaard M, Stouthamer AH (1980) Growth yields and energy generation by Campylobacter sputorum subspecies bubulus during growth in continuous culture with different hydrogen acceptors. Arch Microbiol 124: 221–227Google Scholar
  8. Gebhard NA, Thauer RK, Linder D, Kaulfers P-M, Pfennig N (1985) Mechanism of acetate oxidation to CO2 with elemental sulfur in Desulfuromonas acetoxidans. Arch Microbiol 141: 392–398Google Scholar
  9. Goodwin CS, Armstrong JA, Chilvers T, Peters M, Collins MD, Sly L, McConnell W, Harper WES (1989) Transfer of Campylobacter pylori and Campylobacter mustelae to Helicobacter gen. nov. as Helicobacter pylori comb. nov. and Helicobacter mustelae comb. nov., respectively. Int J Syst Bacteriol 39: 397–405Google Scholar
  10. Jacobs NJ, Wolin MJ (1963a) Electron transport system of Vibrio succinogenes. I. Enzymes and cytochromes of the electron transport system. Biochim Biophys Acta 69: 18–28Google Scholar
  11. Jacobs NJ, Wolin MJ (1963b) Electron transport system of Vibrio succinogenes. II. Inhibition of electron transport by 2-heptyl-4-hydroxyquinoline N-oxide. Biochim Biophys Acta 69: 29–39Google Scholar
  12. Laanbroek HJ, Kingma W, Veldkamp H (1977) Isolation of an aspartate-fermenting, free-living Campylobacter species. FEMS Microbiol Lett 1: 99–102Google Scholar
  13. Laanbroek HJ, Stal LJ, Veldkamp H (1978) Utilization of hydrogen and formate by Campylobacter spec. under aerobic and anaerobic conditions. Arch Microbiol 119: 99–102Google Scholar
  14. Lang E, Lang H (1972) Spezifische Farbreaktion zum direkten Nachweis der Ameisensäure. Z Anal Chem 260: 8–10Google Scholar
  15. Lau PP, DeBrunner-Vossbrinck B, Dunn B, Miotto K, MacDonell MT, Rollins DM, Pillidge CJ, Hespell RB, Colwell RR, Sogin ML, Fox GE (1987) Phylogenetic diversity and position of the genus Campylobacter. Syst Appl Microbiol 9: 231–238Google Scholar
  16. LeGall J, Postgate JR (1973) The physiology of sulphate-reducing bacteria. Adv Microbial Physiol 10: 82–125Google Scholar
  17. Macy JM, Schröder I, Thauer RK, Kröger A (1986) Growth of Wolinella succinogenes on H2S plus fumarate and on formate plus sulfur as energy sources. Arch Microbiol 144: 147–150Google Scholar
  18. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3: 208–218Google Scholar
  19. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167Google Scholar
  20. Niederman RA, Wolin MJ (1972) Requirement of succinate for the growth of Vibrio succinogenes. J Bacteriol 109: 546–549Google Scholar
  21. Paster BJ, Dewhirst FE (1988) Phylogeny of campylobacters, wolinellas, Bacterioides gracilis, and Bacterioides ureolyticus by 16S ribosomal ribonucleic acid sequencing. Int J Syst Bacteriol 38: 56–62Google Scholar
  22. Pfennig N, Biebl H (1981) The dissimilatory sulfur-reducing bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. A handbook on habitats, isolation and identification of bacteria. Springer, Berlin Heidelberg New York, pp 941–947Google Scholar
  23. Schumacher W, Kroneck PMH (1991) Dissimilatory hexaheme c nitrite reductase of “Spirillum” strain 5175: purification and properties. Arch Microbiol 156: 70–74Google Scholar
  24. Schumacher W, Kroneck PMH (1992) Anaerobic energy metabolism of the sulfur-reducing bacterium “Spirillum” 5175 during dissimilatory nitrate reduction to ammonia. Arch Microbiol 157: 464–470Google Scholar
  25. Smibert RM (1984) Genus Campylobacter Sebald and Veron 1963, 907AL. In: Krieg NR, Holt JG (eds), Bergey's manual of systematic bacteriology, vol 1. Williams & Wilkins, Baltimore, pp 111–118Google Scholar
  26. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150: 76–85Google Scholar
  27. Tanner ACR, Socransky SS (1984) Genus VIII. Wolinella Tanner, Badger, Listgarten, Visconti, and Socransky 1981, 439VP. In: Krieg NR, Holt JG (eds) Bergey's manual of systematic bacteriology, vol 1. Williams & Wilkins, Baltimore, pp 646–650Google Scholar
  28. Vandamme P, Falsen E, Rossau R, Hoste B, Segers P, Tytgat R, De Ley J (1991) Revision of Campylobacter, Helicobacter, and Wolinella Taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov. Int J Syst Bacteriol 41: 88–103Google Scholar
  29. Veron M, Chatelain R (1973) Taxonomic study of the genus Campylobacter Sebald and Veron and designation of the neotype strain for the type species, Campylobacter fetus (Smith and Taylor) Sebald and Veron. Int J Syst Bacteriol 23: 122–134Google Scholar
  30. Wolfe RS, Pfennig N (1977) Reduction of sulfur by spirillum 5175 and syntrophism with Chlorobium. Appl Environ Microbiol 33: 427–433Google Scholar
  31. Wolin MJ, Wolin EA, Jacobs NJ (1961) Cytochrome-producing anaerobic vibrio, Vibrio succinogenes sp. nov. J Bacteriol 81: 911–917Google Scholar
  32. Yoshinari T (1980) N2O reduction by Vibrio succinogenes. Appl Environ Microbiol 39: 81–84Google Scholar
  33. Zinder SH, Brock TD (1978) Dimethyl sulfoxide as an electron acceptor for anaerobic growth. Arch Microbiol 116: 35–40Google Scholar
  34. Zöphel A, Kennedy MC, Beinert H, Kroneck PMH (1991) Investigations on microbial sulfur respiration. 2. Isolation, purification, and characterization of cellular components from Spirillum 5175. Eur J Biochem 195: 849–856Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Wolfram Schumacher
    • 1
  • Peter M. H. Kroneck
    • 1
  • Norbert Pfennig
    • 1
  1. 1.Fakultät BiologieUniversität KonstanzKonstanzFederal Republic of Germany

Personalised recommendations