Advertisement

Archives of Microbiology

, Volume 154, Issue 5, pp 448–452 | Cite as

Phototactic responses in Haematococcus lacustris and its modification by light intensity and the carotenoid biosynthesis inhibitor Norflurazon

  • Wolfram Braune
  • Nils G. A. Ekelund
Original Papers

Abstract

At fluence rates below 45 W· m-2 cells of the flagellate stage of Haematococcus lacustris react only positively phototactically with a rather high degree of orientation (indicated by r values up to 0.66 with the Rayleigh test). The directedness of orientation decreases with decreasing irradiance. The degree of directedness of the phototactic response depends on the intensity of preirradiation: Low light intensity applied after strong light application results in a “dark reaction” (low r values), low light given after darkness stimulates a rather high degree of directedness of positive phototaxis. Weak blue light (λ=483 nm; 0.4 W · m-2) stimulates positive phototactic response, whereas comparable red light (λ=658 nm; 0.5 W · m-2) does not.

Cells which were grown in a medium containing 10-4 M Norflurazon (effective in inhibition of carotenoid biosynthesis) although maintaining motility completely lose the ability to react positively phototactically. The possible role of carotenoids in the phototactic orientation is discussed.

Key words

Phototaxis Haematococcus Carotenoids Norflurazon Light intensity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angelini F, Ascoli C, Frediani C, Petracchi D (1986) Transient photoresponses of a phototactic microorganism, Haematococcus pluvialis, revealed by light scattering. Biophys J 50: 929–936CrossRefGoogle Scholar
  2. Benedetti PA, Checcucci A (1975) Paraflagellar body (PFB) pigments studied by fluorescence microscopy in Euglena gracilis. Plant Sci Lett 4: 47–51CrossRefGoogle Scholar
  3. Böhm H-H (1977) Sorption und Wirkung von Chlortriazin-, Phen-oxyfettsäure-und Bipyridyliumherbiziden in statischen und kontinuierlichen Kulturen planktischer Blau-, Kiesel-und Grünalgen. Dissertation Universität Hohenheim, Stuttgart-Hohen-heim, FRG, 128 SGoogle Scholar
  4. Diehn B (1969) Action spectra of the phototactic response in Euglena. Biochim Biophys Acta 177: 136–143CrossRefGoogle Scholar
  5. Ekelund NGA (1988) Photomovements in Gyrodinium dorsum, Gyrodinium aureolum and Chlamydomonas reinhardi. Dissertation University of Lund, Lund, Sweden, p 86Google Scholar
  6. Ekelund NGA (1990) Effects of UV-B radiation on growth and motility of four phytoplankton species. Physiol Plant 78: 590–594CrossRefGoogle Scholar
  7. Ekelund NGA, Björn LO (1987) Photophobic stop-response in a dinoflagellate: Modulation by preirradiation. Physiol Plant 70: 394–398CrossRefGoogle Scholar
  8. Ekelund NGA, Dolle R, Nultsch W (1988) Phototactic response of Chlamydomonas reinhardi in electric fields. Physiol Plant 73: 265–270CrossRefGoogle Scholar
  9. Ekelund NGA, Häder D-P (1988) Photomovement and photobleaching in two Gyrodinium species. Plant Cell Physiol 29: 1109–1114Google Scholar
  10. Ettl H (1983) Chlorophyta I. Phytomonadina. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa, Bd 9. Gustav Fischer, Jena, p 666 ff.Google Scholar
  11. Feinleib ME, Curry GM (1971) The relationship between stimulus intensity and oriented phototaxis response (topotaxis) in Chlamydomonas. Physiol Plant 25: 346–352CrossRefGoogle Scholar
  12. Ferrara R (1975) General review on phototactic action spectra. In: Colombetti G (ed) Biophysics of photoreceptors and photobehaviour of microorganisms. Lito Felici, Pisa, pp 121–145Google Scholar
  13. Forward RB (1973) Phototaxis in a dinoflagellate: action spectra as evidence for a two-pigment system. Planta 111: 167–178CrossRefGoogle Scholar
  14. Foster KW, Smyth RD (1980) Light antennas in phototactic algae. Microbiol Rev 44: 572–630PubMedPubMedCentralGoogle Scholar
  15. Hand WG (1970) Phototactic orientation by the marine dinoflagellate Gyrodinium dorsum Kofoid. I. A mechanism model. J Exp Zool 174: 33–38CrossRefGoogle Scholar
  16. Häder D-P (1979) Photomovement. In: Haupt W, Feinleib ME (eds) Physiology of movements (Encyclopedia of plant physiology, new series, vol 7), Springer, Berlin Heidelberg New York, pp 268–309Google Scholar
  17. Häder D-P (1987) Photomovement in eukaryotic microorganisms. Photobiochem Photobiophys 1987 [Suppl]: 203–214Google Scholar
  18. Häder D-P, Häder MA (1988) Inhibition of motility and phototaxis in the green flagellate, Euglena gracilis, by UV-B radiation. Arch Microbiol 150: 20–25CrossRefGoogle Scholar
  19. Häder D-P, Lebert M (1985) Real time computer-controlled tracking of motile microorganisms. Photochem Photobiol 42: 509–514CrossRefGoogle Scholar
  20. Häder D-P, Lebert M, Dilena MR (1986) New evidence for the mechanism of phototactic orientation of Euglena gracilis. Curr Microbiol 14: 157–163CrossRefGoogle Scholar
  21. Häder D-P, Rhiel E, Wehrmeyer W (1988) Ecological consequences of photomovement and photobleaching in the marine flagellate Cryptomonas maculata. FEMS Microbiol Ecol 53: 9–18CrossRefGoogle Scholar
  22. Haupt W (1959) Dic Phototaxis der Algen. In: Ruhland W (Hrsg) Handbuch der Pflanzenphysiologie, Bd XVII/1. Physiologie der Bewegungen. Springer, Berlin Heidelberg New York, pp 318–370CrossRefGoogle Scholar
  23. Hedlich R (1982) Haematococcustest. In: Ausgewählte Methoden der Wasseruntersuchung, Bd II, 2. Aufl. Gustav Fischer, Jana, pp 328–331Google Scholar
  24. Litvin FF, Sineshchekov OA, Sineshchekov VA (1978) Photoreceptor electric potential in the alga Haematococcus pulvialis. Nature 271: 476–478CrossRefGoogle Scholar
  25. Mainx F (1929) Untersuchungen über den Einfluß von Außenfaktoren auf die phototaktische Stimmung. Arch Protistenkde 68: 105–176Google Scholar
  26. Müller DG, Maier J, Müller H (1987) Flagellum autofluorescence and photoaccumulation in heterokont algae. Photochem Photobiol 46: 1003–1008CrossRefGoogle Scholar
  27. Nultsch W, Häder D-P (1988) Photomovement in motile microorganisms II. Photochem Photobiol 47: 837–869CrossRefGoogle Scholar
  28. Nultsch W, Throm G, Rimscha I v. (1971) Phototaktische Untersuchungen an Chlamydomonas reinhardi Dangeard in homokontinuierlicher Kultur. Arch Microbiol 80: 351–369Google Scholar
  29. Ristori T, Ascoli C, Banchetti R, Parrini P, Petracchi D (1981) Localization of photorecetor and active membrane in the green alga Haematococcus pluvialis. Progr. Protozool. Abstr. VI Int. Congr. Protozool, Warszawa, p 314Google Scholar
  30. Song P-S (1984) Photophysical aspects of blue light receptors: the old question (flavins versus carotenoids) re-examined. In: Senger H (ed) Blue light effects in biological systems. Springer, Berlin Heidelberg New York, pp 75–80CrossRefGoogle Scholar
  31. Song P-S, Moore TA (1974) On the photoreceptor pigment for phototropism and phototaxis: is a carotenoid the most likely candidate? Photochem Photobiol 19: 435–441CrossRefGoogle Scholar
  32. Stavis RL, Hirschberg R (1973) Phototaxis in Chlamydomonas reinhardi. J Cell Biol 59: 367–377CrossRefGoogle Scholar
  33. Strasburger E (1878) Wirkung des Lichtes und der Wärme auf Schwärmsporen. Jenaer Z Naturwiss 12: 551–625Google Scholar
  34. Watanabe M, Furuya M (1982) Phototactic behaviour of individual cells of Cryptomonas sp. in response to continuous and intermittent light stimuli. Photochem Photobiol 35: 559–563CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Wolfram Braune
    • 1
  • Nils G. A. Ekelund
    • 2
  1. 1.Wissenschaftsbereich Pflanzenphysiologie, AG ÖkophysiologieFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Institutionen för Fysiologisk BotanikLunds UniversitetLundSweden

Personalised recommendations