Advertisement

Archives of Microbiology

, Volume 154, Issue 5, pp 422–427 | Cite as

Pigment-protein diversity in chlorosomes of green phototrophic bacteria

  • John F. Stolz
  • R. Clinton Fuller
  • Thomas E. Redlinger
Original Papers

Abstract

In order to compare and contrast the structure and function of the light-harvesting antennae (i.e. chlorosomes) of green bacteria, a procedure for isolating and characterizing them from green sulfur bacteria was developed. The chlorosomes from Chlorobium species with bacteriochlorophyll (Bchl) c or e were isolated by a two step sucrose density centrifugation in the presence of 2% miranol, a mild detergent, and 2 M sodium thiocyanate (NaSCN). Purified chlorosomes from two green sulfur bacteria, Chlorobium phaeobacteroides and Chlorobium tepidum, and the filamentous green bacterium Chloroflexus aurantiacus were analysed by spectrophotometry, SDS-polyacrylamide gel electrophoresis, and immunological procedures. Isolated chlorosomes from both Chlorobium species contain only two electrophoretically separable protein components with approximate molecular masses of 5–7.5 and 34.5 kDa. In addition, they have a major light-harvesting antenna pigment (Bchl c or e), a minor Bchl a species, and carotenoids. Chloroflexus aurantiacus antisera for the three major chlorosome proteins (5.6, 11, and 18 kDa), and the reaction center proteins (24 and 24.5 kDa) did not cross react with any Chlorobium proteins analyzed in this study. Chlorobium limicola f. thiosulfatophilum antisera against the 7.5 kDa chlorosome protein cross reacted strongly with the 5–7.5 kDa protein from Cb. tepidum, weakly with the Cb. phaeobacteroides protein, but not at all to the 5.6 kDa chlorosome protein from Cf. aurantiacus. These results provide further evidence for the evolutionary divergence of the chlorosomes from green phototrophic bacteria (e.g., Chlorobium-type and Chloroflexus-type).

Key words

Chlorosome Green phototrophic bacteria Bacteriochlorophylls a, c, and e Chlorobium phaeobacteroides Chlorobium tepidum Chlorobium limicola Chloroflexus aurantiacus 

Abbreviations

Cb.

Chlorobium

Cf.

Chloroflexus

Bchl.

bacteriochlorophyll

NaSCN

sodium thiocyanate

SDS-PAGE

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Betti JA, Blankenship RE, Natarajan LV, Dickinson LC, Fuller RC (1982) Antenna organization and evidence for the function of a new antenna pigment species in the green bacterium Chloroflexus aurantiacus. Biochim Biophys Acta 680:194–201CrossRefGoogle Scholar
  2. Blankenship RE, Brune DC, Freeman JM, King GH, McManus JH, Nozawa T, Trost JT, Wittmershaus BP (1988) Energy trapping and electron transfer in Chloroflexus aurantiacus. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E, Trüper HG (eds) Green photosynthetic bacteria. Plenum Press, New York, pp 57–68CrossRefGoogle Scholar
  3. Brune DC, Tsunenori N, Blankenship RE (1987) Antenna organization in green photosynthetic bacteria 1. Oligomeric bacteriochlorophyll c as a model for the 740 nm absorbing bacteriochlorophyll c in Chloroflexus aurantiacus chlorosomes. Biochemistry 26:8644–8651CrossRefGoogle Scholar
  4. Burr FA, Burr B (1983) Slab gel system for the resolution of oligopeptides below molecular weight of 10,000. Methods Enzymol 96:239–245CrossRefGoogle Scholar
  5. Castenholz RW, Pierson BK (1981) Isolation of members of the family Chloroflexaceae. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin Heidelberg New York, pp 290–298CrossRefGoogle Scholar
  6. Feick RG, Fuller RC (1984) Topography of the photosynthetic apparatus of Chloroflexus aurantiacus. Biochemistry 23:3693–3700CrossRefGoogle Scholar
  7. Feick RG, Fitzpatrick M, Fuller RC (1982) Isolation and characterization of cytoplasmic membranes and chlorosomes from the green bacterium chloroflexus aurantiacus. J Bacteriol 150: 105–115Google Scholar
  8. Fenna RE, Matthews BW (1975) Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola. Nature (London) 258:573–577CrossRefGoogle Scholar
  9. Fuller RC, Redlinger TE (1985) Light and oxygen regulation of the development of the photosynthestic apparatus in Chloroflexus. In: Steinbeck KE, Bonitz S, Arntzen CJ, Bogorad I (eds) Molecular biology of the photosynthetic apparatus. Cold Spring Harbor Laboratory, New York, pp 155–162Google Scholar
  10. Gerola PD, Olson JM (1986) a new bacteriochlorophyll a-protein complex associated with chlorosomes of green sulfur bacteria. Biochim Biophys Acta 848:69–76CrossRefGoogle Scholar
  11. Gerola PD, Hojrup P, Knudsen J, Roepstorff P, Olson JM (1988) The bacteriochlorophyll c-binding protein from chlorosomes of Chlorobium limicola f. thiosulfatophilum. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E, Trüper HG (eds) Green photosynthetic bacteria. Plenum Press, New York, pp 43–52CrossRefGoogle Scholar
  12. Gibson J, Ludwig W, Stackebrandt E, Woese CR (1985) The phylogeny of th green photosynthetic bacteria: absence of a close relationship between Chlorobium and Chloroflexus. System Appl Microbiol 6:152–156CrossRefGoogle Scholar
  13. Gloe A, Pfennig N, Brochmann HJr, Trowitzsch W (1975) A new bacteriochlorophyll from brown-colored Chlorobiaceae. Arch Microbiol 138:96–101Google Scholar
  14. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685CrossRefGoogle Scholar
  15. Matthews BW, Fenna RE, Boglonesi MC, Schmidt MF, Olson JM (1979) Structure of a bacteriochlorophyll a-protein from the green photosynthetic bacterium Prosthecochloris aestuarii. J Mol Biol 131:259–268CrossRefGoogle Scholar
  16. Olson JM (1978) Bacteriochlorophyll a-proteins from green bacteria. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum Press, New York, pp 161–178Google Scholar
  17. Olson JM (1980) Chlorophyll organization in green photosynthetic bacteria. Biochim Biophys Acta 594:33–51CrossRefGoogle Scholar
  18. Olson JM (1988) Introduction. In: Olson JM, Ormerrod JG, Amesz J, Stackebrandt E, Trüper HG (eds) The green photosynthetic bacteria. Plenum Press, New York, pp 1–2CrossRefGoogle Scholar
  19. Olson JM, Shaw EK, Englberger FM (1976) Comparison of bacteriochlorophyll a-proteins from two green bacteria. Biochem J 159:769–779CrossRefGoogle Scholar
  20. Olson JM, Brune DC, Gerola PD (1990) Organization of chlorophyll and proteins in chlorosomes. In: Drews G, Dawson E (eds) Molecular biology of membrane bound complexes in phototrophic bacteria. Plenum Press, New YorkGoogle Scholar
  21. Oyaizu H, Debrunner-Vossbrinck B, Mandelco L, Studier JA, Woese CR (1987) The green non-sulfur bacteria: a depp branching in the eubacterial line of descent. System Appl Microbiol 9:47–53CrossRefGoogle Scholar
  22. Pfennig N, Trüper HG (1981) Isolation of members of the families Chromatiaceae and Chlorobiaceae. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin Heidelberg New York, pp 279–284CrossRefGoogle Scholar
  23. Pierson BK, Castenholz RW (1974) A phototrophic gliding filamentous bacterium of hot springs Chloroflexus aurantiacus; Gen. and sp. nov. Arch Microbiol 110:5–24CrossRefGoogle Scholar
  24. Puchova NN, Golenko VM (1982) A new green sulfur bacterium, Chlorobium chlorovibroides nov. sp. Mikrobiologiya (Engl translation) 51:118–124Google Scholar
  25. Redlinger TE, Fuller RC (1985) Protein processing as a regulatory mechanism in the synthesis of the photosynthetic bacterium Chloroflexus. Arch Microbiol 141:344–347CrossRefGoogle Scholar
  26. Schägger H, Jagow Gvon (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379CrossRefGoogle Scholar
  27. Schmidt K (1980) A comparative study on the composition of chlorosomes (Chlorobium vesicles) and cytoplasmic membranes from Chloroflexus aurantiacus strain Ok-70-fl and Chlorobium limicola f. thiosulfatophilum strain 6230. Arch Microbiol 124:21–31CrossRefGoogle Scholar
  28. Staehlin AL, Golecki JR, Drews R (1980) Supramolecular organization of chlorosomes (Chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola. Biochim Biophys Acta 589:30–45CrossRefGoogle Scholar
  29. Staehlin AL, Golecki JR, Fuller RC, Drews G (1978) Characterization of the supermolecular architecture of chlorosomes (Chlorobium type vesicles) in freeze fractured cells of Chloroflexus aurantiacus. Arch Microbiol 119:269–277CrossRefGoogle Scholar
  30. Sybesma C, Olson JM (1964) Evidence for a reaction center P840 in the green photosynthetic bacterium Chloropseudomonas ethylicum. Biochim Biophys Acta 75:439–441CrossRefGoogle Scholar
  31. Trüper HG (1987) Phototrophic bacteria (an incoherent group of prokaryotes). A taxonomic versus phylogenitic survey. Microbiologia SEM 3:71–89Google Scholar
  32. Trüper HG, Pfennig N (1981) Characterization and identification of anoxygenic photosynthetic bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin Heidelberg New York, pp 299–312CrossRefGoogle Scholar
  33. Wagner-Huber R, Brunisholz R, Frank G, Zuber H (1988) The bacteriochlorophyll c/e-binding polypeptides from chlorosomes of green photosynthetic bacteria. FEBS Lett 239:8–12CrossRefGoogle Scholar
  34. Wechsler T, Suter F, Fuller RC, Zuber H (1985) The complete amino acid sequence of the bacteriochlorophyll c binding polypeptide from chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus. FEBS Lett 181:173–178CrossRefGoogle Scholar
  35. Woese C (1988) Bacterial evolution. Microbiol Rev 51:221–271Google Scholar
  36. Wullink W, Bruggen EFJvan (1988) Structural studies on chlorosomes from Prosthecochloris aestuarii. In: Olson JM, Ormerrod JG, Amesz J, Stackebrandt E, Trüper HG (eds) Green photosynthetic bacteria. Plenum Press, New York, pp 3–14CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • John F. Stolz
    • 1
  • R. Clinton Fuller
    • 1
  • Thomas E. Redlinger
    • 1
  1. 1.Department of BiochemistryUniversity of MassachusettsAmherstUSA

Personalised recommendations