Journal of Automated Reasoning

, Volume 8, Issue 2, pp 183–212 | Cite as

SETHEO: A high-performance theorem prover

  • R. Letz
  • J. Schumann
  • S. Bayerl
  • W. Bibel


A sound and complete theorem prover for first-order logic is presented, which is based on the connection method. The inference machine is implemented using PROLOG technology, an approach taken also with other systems, most prominently with Stickel's PTTP. But SETHEO differs from those in essential characteristics, among which are the following ones. It incorporates a powerful preprocessing module for a reduction of the input formula. The main proof procedure is realized as a variant of Warren's abstract machine. For search pruning we perform subsumption and regular proofs. Factorization, lemma generation, and the application of proof schemata are offered as options. The entire system is implemented in C and is running on several machines. The most remarkable feature of SETHEO is its performance of up to 70 Klips on a SUN SPARC station 1 with 12 Mips. The paper comprises the theoretical background, the system architecture as well as details of the implementation.

Key words

Theorem proving first-order logic preprocessing connection method model elimination abstract machine technology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Letz and J. Schumann, ‘Global variables in logic programming’, Technical report FKI-96-b-88, Technische Universität München (1988).Google Scholar
  2. 2.
    W. Bibel, Automated Theorem Proving, Vieweg Verlag, Braunschweig, second edition (1987).Google Scholar
  3. 3.
    D. W. Loveland, Automated Theorem Proving: A Logical Basis, North-Holland (1978).Google Scholar
  4. 4.
    M. E. Stickel, ‘A Prolog technology theorem prover: implementation by an extended Prolog compiler’, Journal of Automated Reasoning, 4, 353–380 (1988).Google Scholar
  5. 5.
    D. H. D. Warren, ‘An abstract PROLOG instruction set’, Technical report, SRI, Menlo Park, Ca, USA (1983).Google Scholar
  6. 6.
    E. Eder, ‘An implementation of a theorem prover based on the connection method’. In W. Bibel and B. Petkoff (editors), AIMSA: Artificial Intelligence Methodology Systems Applications, 121–128. North-Holland (1985).Google Scholar
  7. 7.
    C.-L. Chang and R. C.-T. Lee, Symbolic Logic and Mechanical Theorem Proving, Academic Press, Inc., (dy1973).Google Scholar
  8. 8.
    J. A. Robinson, ‘A machine-oriented logic based on the resolution principle”, Journal of the ACM, 12, 23–41 (1965).Google Scholar
  9. 9.
    W. Bibel, R. Letz, and J. Schumann, ‘Bottom-up enhancements of deductive systems’. In I. Plander (editor), Artificial Intelligence and Information-Control Systems of Robots 87, pp. 1–9. North-Holland (1987).Google Scholar
  10. 10.
    M. E. Stickel, ‘Schubert's steamroller problem: formulations and solutions’, Journal of Automated Reasoning, 2, 89–101 (1986).Google Scholar
  11. 11.
    W. McCune, ‘OTTER users' guide’, Technical report, Mathematics and Computer Sci. Division, Argonne National Laboratory, Argonne, Ill., USA, May 1988.Google Scholar
  12. 12.
    E. Eder, ‘Properties of substitutions and unifications’, Journal of Symbolic computation, 1, 31–46 (1985).Google Scholar
  13. 13.
    W. Bibel, ‘Automated inferencing’, Journal of Symbolic Computation, 1, 245–260 (1985).Google Scholar
  14. 14.
    K. Bläsius, N. Eisinger, J. Siekmann, G. Smolka, A. Herold, and C. Walther, ‘The Markgraf Karl refutation proof procedure’. In Proceedings of the Seventh International Joint Conference on Artificial Intelligence, pp. 511–518, Vancouver, 1981.Google Scholar
  15. 15.
    C. B. Suttner, ‘Learning heuristics for automated theorem proving’. Diploma Thesis, Technische Universität München (1989).Google Scholar
  16. 16.
    R. M. Smullyan, First Order Logic. Springer (1968).Google Scholar
  17. 17.
    R. E. Korf, ‘Depth-first iterative deepening: an optimal admissible tree search’, Artificial Intelligence, 27, 97–109 (1985).Google Scholar
  18. 18.
    S. Fleisig, D. Loveland, A. K. Smiley III, and D. L. Yarmush, ‘An implementation of the model elimination proof procedure’, Journal of the ACM, pp. 124–139 (1974).Google Scholar
  19. 19.
    L. M. Pereira and A. Porto, ‘Selective backtracking’. In K. L. Clark and S.-A. Tärnlund (editors), Logic Programming, number 16 in A. P. I. C. Studies in Data Processing, pp. 107–114. Academic Press Inc. (1982).Google Scholar
  20. 20.
    G. S. Tseitin, ‘On the complexity of derivations in the propositional calculus’. In A. O. Silsenko (editor), Studies in Mathematics and Mathematical Logic II, pp. 115–125 (1970).Google Scholar
  21. 21.
    A. Haken, ‘The intractability of resolution’, Theoretical Computer Science, 39, 297–308 (1985).Google Scholar
  22. 22.
    S. A. Cook and R. A. Reckhow, ‘On the lengths of proofs in the propositional calculus’, ACM Sigact News, 6, 15–22 (1974).Google Scholar
  23. 23.
    W. Bibel, ‘Short proofs of the pigeonhole formulas based on the connection method’ Journal of Automated Reasoning, 6, 287–297 (1990).Google Scholar
  24. 24.
    D. Hilbert and W. Ackermann, Grundzüge der theoretischen Logik, Springer (1928). Engl. translation: Mathematical Logic, Chelsea (1950).Google Scholar
  25. 25.
    J. Vlahavas and C. Halatsis, ‘A new abstract Prolog instruction set. In 7th International Workshop on Expert Systems and Applications, pp. 1025–1050, Avignon (1987).Google Scholar
  26. 26.
    J. Schumann, N. Trapp, and M. van der Koelen, ‘SETHEO: User's manual’, Technical report FKI-121-89, Technische Universität München, 1989.Google Scholar
  27. 27.
    J. Corbin and M. Bidoit, ‘A rehabilitation of Robinson's unification algorithm’, In Information Processing, pp. 909–914. North-Holland (1983).Google Scholar
  28. 28.
    D. A. Plaisted, ‘The occur-check problem in Prolog’, New Generation Computing, 2, 309–322 (1984).Google Scholar
  29. 29.
    L. Sterling and E. Shapiro, The Art of Prolog, MIT Press (1986).Google Scholar
  30. 30.
    G. A. Wilson and J. Minker, ‘Resolution, refinements and search strategies: a comparative study’, IEEE Transactions on Computers, C25, 782–801 (1976).Google Scholar
  31. 31.
    R. Reboh, B. Raphael, R. A. Yates, R. E. Kling and C. Verlarde, ‘Study of automatic theorem-proving programs’ Technical report 75, SRI AI Center, November 1972.Google Scholar
  32. 32.
    D. Michie, R. Ross, and G. J. Shannan, ‘G-Deduction’. In B. Meltzer and D. Michie (editors), Machine Intelligence, pp. 141–165. John Wiley and Sons (1972).Google Scholar
  33. 33.
    L. Wos, Unpublished Notes. Argonne National Laboratory (1965).Google Scholar
  34. 34.
    J. D. Lawrence and J. D. Starkey, ‘Experimental results of resolution based theorem-proving strategies’. Technical report, Computer Science Department, Washington State University, Pullman (1974).Google Scholar
  35. 35.
    J. Pelletier and P. Rudnicki, ‘Non-obviousness’, AAR Newsletter6, pp. 4–5 (1986).Google Scholar
  36. 36.
    L. Wos, Automated Reasoning: 33 Basic Research Problems, Prentice Hall (1988).Google Scholar
  37. 37.
    E. Eder. Personal communication (1986).Google Scholar
  38. 38.
    J. Schumann and R. Letz, ‘PARTHEO: a high performance parallel theorem prover’. In Cade 90, 40–56, Springer (1990).Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • R. Letz
    • 1
  • J. Schumann
    • 1
  • S. Bayerl
    • 1
  • W. Bibel
    • 2
    • 3
    • 4
  1. 1.Institut für InformatikTechnische Universität MünchenGermany
  2. 2.Technische Hochschule DarmstadtGermany
  3. 3.University of British ColumbiaVancouverCanada
  4. 4.Canadian Institute for Advanced ResearchCanada

Personalised recommendations