Journal of Applied Electrochemistry

, Volume 26, Issue 11, pp 1195–1199 | Cite as

Electrocatalytic properties of ternary oxide mixtures of composition Ru0.3Ti(0.7−x)CexO2: oxygen evolution from acidic solution

  • L. A. De Faria
  • J. F. C. Boodts
  • S. Trasatti


Mixed oxide electrodes of general composition Ru0.3Ti(0.7−x)Ce x O2 were prepared by thermal decomposition of the respective chlorides using Ti as a support. x was varied between 0 and 70 mol %. Oxygen evolution was used as a model reaction to investigate the dependence of the electrocatalytic properties on oxide composition. Kinetics was studied by quasistationary current-potential curves and reaction order determination. A minimum Tafel slope of about 30 mV has been found in the 10–30% CeO2 composition range. On the basis of a zero reaction order at constant overpotential, a reaction mechanism has been proposed accounting for the composition dependence of the Tafel slope. It has been concluded that the replacement of TiO2 with CeO2 brings about an increase in the electrocatalytic activity for oxygen evolution, while the layer becomes more prone to mechanical erosion.


TiO2 CeO2 Reaction Order Oxygen Evolution Electrocatalytic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Saito, M. Kobayashi and Y. Kawai, Japan, Kokai Tokyo Koho 78 (1978) 33983: Chem. Abstr. 89 (1978) 97165.Google Scholar
  2. [2]
    A. Nakamura and S. Saito, ibid. 79 (1978) 202–209; Chem. Abstr. 91 (1979) 219421.Google Scholar
  3. [3]
    L. Kühnemund, H. Heidrich, R. Sabela, L. Stephan and L. Müller, Z. Phys. Chem. 271 (1990) 901.Google Scholar
  4. [4]
    L. A. de Faria, J. F. C. Boodts and S. Trasatti, Electrochim. Acta 37 (1992) 2511.Google Scholar
  5. [5]
    R. Garavaglia, C. M. Mari and S. Trasatti, Surf. Technol. 23 (1984) 41.Google Scholar
  6. [6]
    G. Lodi, E. Sivieri, A. De Battisti and S. Trasatti, J. Appl. Electrochem. 8 (1978) 135.Google Scholar
  7. [7]
    S. Trasatti, J. Electroanal. Chem. 111 (1980) 125.Google Scholar
  8. [8]
    L. A. de Faria, J. F. C. Boodts and S. Trasatti, to be submitted.Google Scholar
  9. [9]
    D.M. Shub, M.F. Reznik and V. V. Shalaginov, Electrokhimiya 221 (1985) 937.Google Scholar
  10. [10]
    S. Trasatti, Elektrochim. Acta 36 (1991) 225.Google Scholar
  11. [11]
    R. Parsons, Trans. Faraday Soc. 54 (1958) 1053.Google Scholar
  12. [12]
    J. O'M. Bockris, J. Chem. Phys. 24 (1956) 817.Google Scholar
  13. [13]
    C. Angelinetta, M. Falciola and S. Trasatti, J. Electroanal. Chem. 205 (1986) 347.Google Scholar
  14. [14]
    L. I. Krishtalik, Electrochim. Acta 26 (1981) 329.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • L. A. De Faria
    • 1
  • J. F. C. Boodts
    • 2
  • S. Trasatti
    • 3
  1. 1.Instituto de Química de São CarlosUniversidade de São PauloSão Carlos, S.P.Brazil
  2. 2.FFCLRP, Departamento de QuímicaUniversidade de São PauloRiheirdo Preto, S.P.Brazil
  3. 3.Department of Physical Chemistry and ElectrochemistryUniversity of MilanMilanItaly

Personalised recommendations