Advertisement

Journal of Automated Reasoning

, Volume 5, Issue 4, pp 493–518 | Cite as

A mechanically verified code generator

  • William D. Young
Article

Abstract

We describe the specification, implementation and proof of correctness of a code generator for a subset of Gypsy 2.05. The code generator is specified in the Boyer-Moore logic; its proof is fully machine-checked using the Kaufmann-enhanced Boyer-Moore theorem prover. Our code generator sits atop a ‘stack’ of verified system components providing a prototype development environment for constructing highly reliable application Programs.

Key words

Automatic theorem proving code generator code verification compiler computational logic correctness program verification programming language semantics system verification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubin, R., ‘Mechanizing structural induction’, PhD Thesis, Univ. of Edinburgh, Edinburgh, Scotland, 1976.Google Scholar
  2. 2.
    Bevier, W. R., ‘Kit: A study in operating system verification’, Tech. Rept CLI-28, Computational Logic, Inc., August, 1988.Google Scholar
  3. 3.
    Bevier, W. R., Hunt, W. A., Moore, J S., and Young, W. D., ‘An approach to system verification’ (in this issue of The Journal of Automated Reasoning).Google Scholar
  4. 4.
    Boyer, R. S. and Moore, J S., A Computational Logic, Academic Press, New York, 1979.Google Scholar
  5. 5.
    Boyer, R. S. and Moore, J S., A Computational Logic Handbook, Academic Press, New York, 1988.Google Scholar
  6. 6.
    Burstall, R. M., ‘Proving properties of programs by structural induction’, Computer J. 12, 1 (February, 1969), 41–48.Google Scholar
  7. 7.
    Cartwright, R., ‘A practical formal semantic definition and verification system for typed LISP’, PhD Thesis, Stanford Univ., 1976.Google Scholar
  8. 8.
    Chirica, L. M. and Martin, D. F., ‘An approach to compiler correctness’, Proceedings of the International Conference on Reliable Software, April, 1975, pp. 96–103.Google Scholar
  9. 9.
    Cohn, A., ‘Machine assisted proofs of recursion implementation’, PhD Thesis, Univ. of Edinburgh, Edinburgh, Scotland, 1979.Google Scholar
  10. 10.
    Good, D. I., Akers, R. L. and Smith, L. M., ‘Report on Gypsy 2.05’, Tech. Rept CLI-1, Computational Logic, Inc., October, 1986.Google Scholar
  11. 11.
    Good, D. I., Divito, B. L. and Smith, M. K., ‘Using the Gypsy methodology’, Tech. Rept Draft CLI-2, Computational Logic, Inc., January, 1988.Google Scholar
  12. 12.
    Henhapl, W. and Jones, C. B., ‘The block structure concept and some possible implementations’, Tech. Rept 25.104, IBM Laboratories, Vienna, 1970.Google Scholar
  13. 13.
    Hunt, W. A., ‘The mechanical verification of a microprocessor design’, Tech. Rept CLI-6, Computational Logic, Inc., September, 1986.Google Scholar
  14. 14.
    Kaufmann, Matt, ‘A user's manual for an interactive enhancement to the Boyer-Moore theorem prover’, Tech. Rept CLI-19, Computational Logic, Inc., May, 1988.Google Scholar
  15. 15.
    Lucas, P., ‘Two constructive realizations of the block concept and their realization’, Tech. Rept 25.082, IBM Laboratories, Vienna, 1968.Google Scholar
  16. 16.
    Lynn, D. S., ‘Interactive compiler proving using Hoare proof rules’, Tech. Rept ISI/RR-78-70, Information Sciences Institute, January, 1978.Google Scholar
  17. 17.
    McCarthy, John, ‘Towards a mathematical science of computation’, Proceedings of the IFIP Congress, Amsterdam, 1962.Google Scholar
  18. 18.
    McCarthy, John and Painter, J., ‘Correctness of a compiler for arithmetic expressions’, Proceeding of Symposium on Applied Mathematics, American Mathematical Society, 1967.Google Scholar
  19. 19.
    Milner, R. and Weyhrauch, R., ‘Proving compiler correctness in a mechanized logic’, in Machine Intelligence 7, Edinburgh Univ. Press, Edinburgh, Scotland, 1972, pp. 51–70.Google Scholar
  20. 20.
    Milne, R. and Strachey, C., A Theory of Programming Language Semantics, Chapman and Hall, London, 1976.Google Scholar
  21. 21.
    Moore, J S., ‘A mechanically verified language implementation’, Tech. Rept CLI-30, Computational Logic, Inc., September, 1988.Google Scholar
  22. 22.
    Moore, J S., ‘PITON: A verified assembly level language’, Tech. Rept CLI-22, Computational Logic, Inc., June, 1988.Google Scholar
  23. 23.
    Polak, W., Compiler Specification and Verification, Springer-Verlag, Berlin, 1981.Google Scholar
  24. 24.
    Ragland, L. C., ‘A verified program verifier’, PhD Thesis, Univ. of Texas at Austin, 1973.Google Scholar
  25. 25.
    Young, W. D., ‘A verified optimizer for Pico-Piton’, Internal Note 107, December, 1988, Computational Logic, Inc., Austin, Texas.Google Scholar
  26. 26.
    Young, W. D., ‘A verified code generator for a subset of Gypsy’, PhD Thesis, Univ. of Texas at Austin, December, 1988.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • William D. Young
    • 1
  1. 1.Computational Logic, Inc.AustinU.S.A.

Personalised recommendations