Advertisement

Journal of Biomolecular NMR

, Volume 3, Issue 1, pp 121–126 | Cite as

Isotope-edited multidimensional NMR of calcineurin B in the presence of the non-deuterated detergent CHAPS

  • Jacob Anglister
  • Stephan Grzesiek
  • Hao Ren
  • Claude B. Klee
  • Ad Bax
Short Communications

Summary

At the concentration needed for NMR, the calcium-saturated form of calcineurin B dissolved in water shows resonance line widths that indicate aggregation of this protein. Although the line width or aggregation state can be influenced to some degree by temperature, pH, and salt concentrations, in the absence of detergent no conditions could be found where the protein behaved as a monomeric unit. In the presence of a 10- to 20-fold molar excess of the zwitterionic detergent 3-[(3-cholamidopropyl)-dimethyl-ammonio]-1-propanesulfonate (CHAPS), resonance line widths were considerably narrower and were compatible with a protein of ∼25 kDa. The presence of the NMR signals of the non-deuterated CHAPS does not interfere with modern isotope-directed NMR studies as the signals from protons not attached to 15N or 13C are removed by isotope filtering and purge pulses.

Keywords

Detergent CHAPS Calcineurin Isotope labeling Protein structure determination Multidimensional NMR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitken, A., Cohen, P., Santikarn, S., Williams, D.H., Calder, A.G. and Klee, C.B. (1982) FEBS Lett., 150, 314–317.Google Scholar
  2. Barbato, G., Ikura, M., Kay, L.E., Pastor, R.W. and Bax, A. (1992) Biochemistry, 31, 5269–5278.Google Scholar
  3. Guerini, D. and Klee, C.B. (1991) Adv. Prot. Phosphatase, 6, 391–410.Google Scholar
  4. Hjelmeland, L.M., Nebert, D.W. and Osborne Jr., J.C. (1983) Anal. Biochem., 130, 72–82.Google Scholar
  5. Hori, A., Hayashi, F., Kyogoku, Y. and Akutsu, H. (1988) Eur. J. Biochem., 174, 503–508.Google Scholar
  6. Kay, L.E., Torchia, D.A. and Bax, A. (1989) Biochemistry, 28, 8972–8979.Google Scholar
  7. Kay, L.E., Clore, G.M., Bax, A. and Gronenborn, A.M. (1990) Science, 249, 411–414.Google Scholar
  8. Kline, T., Park, H. and Meyerson, L.R. (1989) Life Sciences, 45, 1997–2005.Google Scholar
  9. Liu, J., Farmer, J.D., Lane, W.S., Friedman, J., Weissman, I. and Schreiber, S.L. (1991) Cell, 66, 807–815.Google Scholar
  10. Messerle, B.A., Wider, G., Otting, G., Weber, C. and Wüthrich, K. (1989) J. Magn. Reson., 85, 608–613.Google Scholar
  11. O'Neil, J.D. and Sykes, B.D. (1989) Biochemistry, 28, 6736–6745.Google Scholar
  12. Robinson, N.C. and Tanford, C. (1975) Biochemistry, 14, 369–378.Google Scholar
  13. Seigneuret, M., Neumann, J.M. and Rigaud, J.L. (1991a) J. Biol. Chem., 266, 10066–10069.Google Scholar
  14. Seigneuret, M., Neumann, J.M., Levy, D. and Rigaud, J.L. (1991b) Biochemistry, 30, 3885–3892.Google Scholar
  15. Sklenar, V. and Bax, A. (1987) J. Magn. Reson., 74, 469–479.Google Scholar
  16. Wider, G.K., Lee, H. and Wüthrich, K. (1982) J. Mol. Biol., 155, 367–388.Google Scholar

Copyright information

© ESCOM Science Publishers B.V 1993

Authors and Affiliations

  • Jacob Anglister
    • 1
  • Stephan Grzesiek
    • 1
  • Hao Ren
    • 2
  • Claude B. Klee
    • 2
  • Ad Bax
    • 1
  1. 1.Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaU.S.A.
  2. 2.Laboratory of Biochemistry, National Cancer InstituteNational Institutes of HealthBethesdaU.S.A.

Personalised recommendations