Advertisement

Journal of Biomolecular NMR

, Volume 3, Issue 1, pp 67–80 | Cite as

The use of 1JCαHα coupling constants as a probe for protein backbone conformation

  • Geerten W. Vuister
  • Frank Delaglio
  • Ad Bax
Research Papers

Summary

Simple pseudo-3D modifications to the constant-time HSQC and HCACO experiments are described that allow accurate (±0.5 Hz) measurement of one bond JCαHα coupling constants in proteins that are uniformly enriched with 13C. An empirical φ,ψ-surface is calculated which describes the deviation of 1JCαHα from its random coil value, using 203 1JCαHα values measured for residues in the proteins calmodulin, staphylococcal nuclease, and basic pancreatic trypsin inhibitor, for which φ and ψ are know with good precision from previous X-ray crystallographic studies. Residues in α-helical conformation exhibit positive deviations of 4–5 Hz, whereas deviations in β-sheet are small and, on average, slightly negative. Data indicate that 1JCαHα depends primarily on ψ, and that 1JCαHα may be useful as a qualitative probe for secondary structure. Comparison of 1JCαHα coupling constants measured in free calmodulin and in its complex with a 26-aminoacid peptide fragment of myosin light-chain kinase confirm that the calmodulin secondary structure is retained upon complexation but that disruption of the middle part of the ‘central helix’ is even more extensive than in free calmodulin.

Keywords

One-bond coupling Protein backbone Calmodulin Secondary structure 13C enrichment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babu, Y.S., Bugg, C.E. and Cook, W.J. (1988) J. Mol. Biol., 204, 191–204.Google Scholar
  2. Barbato, G., Ikura, M., Kay, L.E., Pastor, R.W. and Bax, A. (1992) Biochemistry, 31, 5269–5278.Google Scholar
  3. Barfield, M. and Johnston, M.D. (1973) Chem. Rev., 73, 53–73.Google Scholar
  4. Bax, A., Griffey, R.H. and Hawkins, B.L. (1983) J. Magn. Reson., 55, 301–315.Google Scholar
  5. Bystrov, V.F. (1976) Prog. NMR Spectrosc., 10, 44–81.Google Scholar
  6. Chary, K.V., Otting, G. and Wüthrich, K. (1991) J. Magn. Reson., 93, 218–224.Google Scholar
  7. Delaglio, F., Torchia, D. and Bax, A. (1991) J. Biomol. NMR 1, 439–446.Google Scholar
  8. Edison, A.S., Westler, W.M. and Markley, J. (1991) J. Magn. Reson., 92, 434–438.Google Scholar
  9. Egli, H. and vonPhilipsborn, W. (1981) Helv. Chim. Acta, 64, 976–988.Google Scholar
  10. Gil, V.M.S. and vonPhilipsborn, W. (1989) Magn. Reson. Chem., 27, 409–430.Google Scholar
  11. Griesinger, C. and Eggenberger, U. (1992) J. Magn. Reson., 97, 426–434.Google Scholar
  12. Griesinger, C., Sørensen, O.W. and Ernst, R.R. (1986) J. Chem. Phys., 85, 6837–6843.Google Scholar
  13. Hansen, P.E. (1981) Prog. NMR Spectrosc., 14, 175–296.Google Scholar
  14. Hansen, P.E. (1991) Biochemistry, 30, 10457–10466.Google Scholar
  15. Ikura, M., Kay, L.E. and Bax, A. (1990) Biochemistry, 29, 4659–4667.Google Scholar
  16. Ikura, M., Kay, L.E., Krinks, M. and Bax, A. (1991a) Biochemistry, 30, 5498–5504.Google Scholar
  17. Ikura, M., Spera, S., Barbato, G., Kay, L.E., Krinks, M. and Bax, A. (1991b) Biochemistry, 30, 9216–9228.Google Scholar
  18. Ikura, M., Clore, G.M., Gronenborn, A.M., Klee, C.B., Zhu, G. and Bax, A. (1992) Science, 256, 632–638.Google Scholar
  19. Kay, L.E., Torchia, D.A. and Bax, A. (1989) Biochemistry, 28, 8972–8979.Google Scholar
  20. Loll, P.J. and Lattman, E.E. (1989) Proteins: Struct. Funct. Genet., 5, 183–201.Google Scholar
  21. Marion, D., Ikura, M., Tschudin, R. and Bax, A. (1989) J. Magn. Reson., 85, 393–399.Google Scholar
  22. Messerle, B.A., Wider, G., Otting, G., Weber, C. and W#uthrich, K. (1989) J. Magn. Reson., 85, 608–613.Google Scholar
  23. Montelione, G.T., Winkler, M.E., Rauenbühler, P. and Wagner, G. (1989) J. Magn. Reson., 82, 198–204.Google Scholar
  24. Palmer III, A.G., Fairbrother, W., Cavanagh, J., Wright, P.E. and Rance, M. (1992) J. Biomol. NMR, 2, 103–108.Google Scholar
  25. Powers, R., Gronenborn, A.M., Clore, G.M. and Bax, A. (1991) J. Magn. Reson., 94, 209–213.Google Scholar
  26. Santoro, J. and King, G.C. (1992), J. Magn. Reson., 97, 202–207.Google Scholar
  27. Shaka, A.J., Keeler, J., Frenkiel, T., and Freeman, R. (1983a) J. Magn. Reson., 52, 335–338.Google Scholar
  28. Shaka, A.J., Baker, P. and Freeman, R. (1983b) J. Magn. Reson., 53, 313–340.Google Scholar
  29. Sørensen, O.W., Eich, G.W., Levitt, M.H., Bodenhausen, G. and Ernst, R.R. (1983) Prog. NMR Spectrosc., 16, 163–192.Google Scholar
  30. Sørensen, O.W. and Ernst, R.R. (1983) J. Magn. Reson., 51, 477–489.Google Scholar
  31. Spera, S. and Bax, A. (1991) J. Am. Chem. Soc., 113, 5490–5492.Google Scholar
  32. Van deVen, F.J.M. and Philippens, M.E.P. (1992) J. Magn. Reson., 97, 637–644.Google Scholar
  33. Vuister, G.W. and Bax, A. (1992a), J. Biomol. NMR, 2, 401–405.Google Scholar
  34. Vuister, G.W. and Bax, A. (1992b) J. Magn. Reson., 98, 428–435.Google Scholar
  35. Vuister, G.W., Delaglio, F. and Bax, A. (1992) J. Am. Chem. Soc., in press.Google Scholar
  36. Wagner, G. and Brühwiler, D. (1986) Biochem stry, 25, 5839–5843.Google Scholar
  37. Wider, G., Neri, D., Otting, G. and Wüthrich, K. (1989) J. Magn. Reson., 85, 426–431.Google Scholar
  38. Wishart, D.S., Sykes, B.D., Richards, F.M. (1991), J. Mol. Biol., 222, 311–333.Google Scholar
  39. Wlodawer, A., Deisenhofer, J. and Huber, R. (1987) J. Mol. Biol., 193, 145–156.Google Scholar

Copyright information

© ESCOM Science Publishers B.V 1993

Authors and Affiliations

  • Geerten W. Vuister
    • 1
  • Frank Delaglio
    • 1
  • Ad Bax
    • 1
  1. 1.Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaU.S.A.

Personalised recommendations