Journal of Biomolecular NMR

, Volume 3, Issue 1, pp 1–17 | Cite as

The solution structure of the human retinoic acid receptor-β DNA-binding domain

  • R. M. A. Knegtel
  • M. Katahira
  • J. G. Schilthuis
  • A. M. J. J. Bonvin
  • R. Boelens
  • D. Eib
  • P. T. van der Saag
  • R. Kaptein
Research Papers


The three-dimensional structure of the DNA-binding domain of the human retinoic acid receptor-β (hRAR-β) has been determined by nuclear magnetic resonance spectroscopy in conjunction with distance geometry, restrained molecular dynamics and iterative relaxation matrix calculations. A total of 1244 distance restraints were obtained from NOE intensities, of which 448 were intra-residue and 796 inter-residue restraints. In addition 23 χ and 30 ϕ dihedral angle restraints were obtained from J-coupling data. The two ‘zinc-finger’ regions of the 80-amino acid residue protein are followed by two α-helices that cross each other perpendicularly. There is a short stretch of b-sheet near the N-terminus. The α-helical core of the protein is well determined with a backbone root-mean-square deviation (r.m.s.d.) with respect to the average of 0.18 Å and 0.37 Å when the side chains of residues 31, 32, 36, 61, 62, 65 and 69 are included. The r.m.s.d. for the backbone of residues 5–80 is 0.76 Å. For the first finger (residues 8–28), the r.m.s.d. of the backbone is 0.79 Å. For the second finger (residues 44–62) the r.m.s.d. is 0.64 Å. The overall structure is similar to that of the corresponding domain of the glucocorticoid receptor, although the C-terminal part of the protein is different. The second α-helix is two residues shorter and is followed by a well-defined region of extended backbone structure.


Retinoic acid receptor DNA binding domain Zinc finger Solution structure Nuclear magnetic resonance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bax, A., Griffey, R.H. and Hawkins, B.L. (1983) J. Am. Chem. Soc., 105, 7188–7190.Google Scholar
  2. Beato, M. (1989) Cell, 56, 335–344.Google Scholar
  3. Benbrook, D., Lernhardt, E. and Pfahl, M. (1988) Nature, 333, 669–672.Google Scholar
  4. Berg, J.M. (1989) Cell, 57, 1065–1069.Google Scholar
  5. Boelens, R., Koning, T.M.G. and Kaptein, R. (1988) J. Mol. Struct., 173, 299–311.Google Scholar
  6. Bonvin, A.M.J.J., Rullmann, J.A.C., Lamerichs, R.M.J.N., Boelens, R. and Kaptein, R. Proteins: structure, function and genetics, in press.Google Scholar
  7. Brand, N.J., Petkovich, M., Krust, A., Chambon, P., deThé, H., Marchio, A., Tiollas, P. and Dejean, A. (1988) Nature, 332 850–853.Google Scholar
  8. Danielsen, M., Hinck, L. and Ringold, G.M. (1989) Cell, 57, 1131–1138.Google Scholar
  9. DeThé, H., Marchio, A., Tiollais, P. and Dejean, A. (1987) Nature, 330, 667–670Google Scholar
  10. DeThé, H., delMar Vivanco-Ruiz, M., Tiollais, P., Stunnenberg, H. and Dejean, A. (1990) Nature, 343, 177–180.Google Scholar
  11. Evans, R.M. (1988) Science, 240, 889–895.Google Scholar
  12. Freedman, L.P., Luisi, B.F., Korszun, Z.R., Basavappa, R., Sigler, P.B. and Yamamoto, K.R. (1988) Nature, 334, 543–546.Google Scholar
  13. Giguere, V., Ong, E.S., Sequi, P. and Evans, R.M. (1987) Nature, 330, 624–627.Google Scholar
  14. Green, L.M. and Berg, J.M. (1989) Proc. Natl. Acad. Sci. USA, 86, 4047–4051.Google Scholar
  15. Härd, T., Kellenbach, E., Boelens, R., Maler, B.A., Dahlman, K., Freedman, L.P., Carlstedt-Duke, J., Yamamoto, K.R., Gustafsson, J. and Kaptein, R. (1990) Science, 249, 157–160.Google Scholar
  16. Havel, T.F., Kuntz, I.D. and Crippen, G.M. (1983) Bull. Math. Biol., 45, 665–720.Google Scholar
  17. Havel, T.F. and Wüthrich, K. (1985) J. Mol. Biol., 182, 281–294.Google Scholar
  18. Jeener, J., Meier, B.H., Bachmann, P. and Ernst, R.R. (1982) J. Chem. Phys., 71, 4546–4553.Google Scholar
  19. Katahira, M., Knegtel, R.M.A., Boelens, R., Eib, D., Schilthuis, J.G., van derSaag, P.T. and Kaptein, R. (1992) Biochemistry, 31, 6474–6480.Google Scholar
  20. Kliewer, S.A., Umesono, K., Mangelsdorf, D.J. and Evans, R.M. (1992) Nature, 355, 446–449.Google Scholar
  21. Koning, T.M.G., Boelens, R. and Kaptein, R. (1990) J. Magn. Reson., 90, 111–123.Google Scholar
  22. Koning, T.M.G., Boelens, R., van derMarel, G.A., vanBoom, J.H. and Kaptein, R. (1991) Biochemistry, 30, 3787–3797.Google Scholar
  23. Krust, A., Kastner, P., Petkovich, M., Zelent, A. and Chambon, P. (1989) Proc. Natl. Acad. Sci. USA, 86, 5310–5314.Google Scholar
  24. Kunkel, T.A., Roberts, J.D. and Zakour, R.A. (1987) Meth. Enzymol., 154, 367–382.Google Scholar
  25. Leid, M., Kastner, P., Lyons, R., Nakshatri, H., Saunders, M., Zacharewski, T., Chen, J.-Y., Staub, A., Garnier, J.-M., Mader, S. and Chambon, P. (1992) Cell, 68, 377–395.Google Scholar
  26. Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546–24570.Google Scholar
  27. Luisi, B.F., Xu, W.X., Otwinowski, Z., Freedman, L.P., Yamamoto, K.R. and Sigler, P.B. (1991) Nature, 352, 497–505.Google Scholar
  28. Macura, S. and Ernst, R.R. (1980) Molec. Phys., 41, 95–117.Google Scholar
  29. Mader, S., Kumar, V., deVerneuil, H. and Chambon, P. (1989) Nature, 338, 271–274.Google Scholar
  30. Marion, D. and Wüthrich, K. (1983) Biochem. Biophys. Res. Commun., 113, 967–974.Google Scholar
  31. Maxam, A. and Gilbert, W. (1980) Meth. Enzymol., 65, 499–560.Google Scholar
  32. Miller, J., McLachlan, A.D. and Klug, A. (1985) EMBO J., 4, 1609–1614.Google Scholar
  33. Müller, L. (1987) J. Magn. Reson., 72, 191–196.Google Scholar
  34. Petkovich, M., Brand, N.J., Krust, A. and Chambon, P. (1987) Nature, 330, 444–450.Google Scholar
  35. Rance, M., Sørenson, O.W., Bodenhausen, G., Wagner, G., Ernst, R.R. and Wüthrich, K. (1983) Biochem. Biophys. Res. Commun., 117, 479–485.Google Scholar
  36. Scheek, R.M. and Kaptein, R. (1988) In Methods in Enzymology, Vol. 117 (Eds, Oppenheimer, N.J. and James, J.L.) Academic Press, New York pp. 204–208.Google Scholar
  37. Schwabe, J.W.R., Neuhaus, D. and Rhodes, D. (1990) Nature, 348, 458–461.Google Scholar
  38. States, D.J., Haberkorn, R.A. and Ruben, D.J. (1982) J. Magn. Reson., 48, 286–297.Google Scholar
  39. Studier, F.W. and Moffat, B.A. (1986) J. Mol. Biol., 189, 113–130.PubMedGoogle Scholar
  40. Suck, D. and Oefner, C. (1987) Nature, 327, 620–625.Google Scholar
  41. Thaller, C. and Eichele, G. (1987) Nature, 327, 625–628.CrossRefPubMedGoogle Scholar
  42. Umesono, K. and Evans, R.M. (1989) Cell, 57, 1131–1146.Google Scholar
  43. Umesono, K., Murakami, K.K., Thompson, C.C. and Evans, R.M. (1991) Cell, 65, 1255–1266CrossRefPubMedGoogle Scholar
  44. Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York.Google Scholar
  45. Yu, V.C., Delsert, C., Andersen, B., Holloway, J.M., Devarey, O.V., Näär, A.M., Kim, S.Y., Boutin, J.-M., Glass, C.K. and Rosenfeld, M.G. (1991) Cell, 67, 1251–1266.Google Scholar
  46. Zhang, X., Hoffmann, B., Tran, P.B.-V., Graupner, G. and Pfahl, M. (1992) Nature, 355, 441–446.Google Scholar
  47. Zuiderweg, E.R.P., Boelens, R. and Kaptein, R. (1985) Biopolymers, 24, 601–611.Google Scholar

Copyright information

© ESCOM Science Publishers B.V 1993

Authors and Affiliations

  • R. M. A. Knegtel
    • 1
  • M. Katahira
    • 1
  • J. G. Schilthuis
    • 2
  • A. M. J. J. Bonvin
    • 1
  • R. Boelens
    • 1
  • D. Eib
    • 1
  • P. T. van der Saag
    • 2
  • R. Kaptein
    • 1
  1. 1.Department of ChemistryUniversity of UtrechtUtrechtThe Netherlands
  2. 2.Hubrecht LaboratoryNetherlands Institute for Developmental BiologyUtrechtThe Netherlands

Personalised recommendations