Journal of Applied Electrochemistry

, Volume 26, Issue 10, pp 1007–1018 | Cite as

Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes

  • J. C. Farmer
  • D. V. Fix
  • G. V. Mack
  • R. W. Pekala
  • J. F. Poco


A process for the capacitive deionization of water with a stack of carbon aerogel electrodes has been developed by Lawrence Livermore National Laboratory (LLNL). Unlike ion exchange, one of the more conventional deionization processes, no chemicals are required for regeneration of the system. Electricity is used instead. An aqueous solution of NH4ClO4 is pumped through the electrochemical cell. After polarization, NH in4 su+ and ClO in4 su− ions are removed from the water by the imposed electric field and trapped in the extensive cathodic and anodic double layers. This process produces one stream of purified water and a second stream of concentrate. The effects of cell voltage, salt concentration, and cycling on electrosorption capacity have been studied in detail.


Physical Chemistry Aqueous Solution Salt Concentration Double Layer National Laboratory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. A. Trainham and J. Newman, J. Electrochem. Soc. 124 (1977) 1528–40.Google Scholar
  2. [2]
    J. Van Zee and J. Newman, ibid. 124 (1977) 706–8.Google Scholar
  3. [3]
    K. Moeglich, US Patent 4072 596, 7 Feb. (1978).Google Scholar
  4. [4]
    W. J. Blaedel and J. C. Wang, Anal. Chem. 51 (1979) 799–802.Google Scholar
  5. [5]
    T. Risch and J. Newman, J. Electrochem. Soc. 131 (1984) 2551–6.Google Scholar
  6. [6]
    P. Lessner and J. Newman, ibid. 131 (1984) 1828–31.Google Scholar
  7. [7]
    G. F. Platek, US Patent 4515 672, 7 May (1985).Google Scholar
  8. [8]
    M. Matlosz and J. Newman, J. Electrochem. Soc. 133 (1986) 1850–9.Google Scholar
  9. [9]
    B. B. Arnold and G. W. Murphy, J. Phys. Chem. 65 (1961) 135–8.Google Scholar
  10. [10]
    D. D. Caudle, J. H. Tucker, J. L. Cooper, B. B. Arnold and A. Papastamataki, ‘Electrochemical Demineralization of Water with Carbon Electrodes’, Research and Development Progress Report 188, US Department of the Interior, May (1966).Google Scholar
  11. [11]
    A. M. Johnson, A. W. Venolia, J. Newman, R. G. Wilbourne, C. M. Wong, , W. S. Gillam, S. Johnson and R. H. Horowitz, ‘Electrosorb Process for Desalting Water’, Office of Saline Water Research and Development Progress Report 516, US Department of the Interior, Publication 200 056, March (1970).Google Scholar
  12. [12]
    A. M. Johnson, A. W. Venolia, R. G. Wilbourne and J. Newman, ‘The Electrosorb Process for Desalting Water’, Marquardt Co., Van Nuys, CA, March (1970).Google Scholar
  13. [13]
    A. M. Johnson, US Patent 3515 664, 2 June (1970).Google Scholar
  14. [14]
    A. M. Johnson and J. Newman, J. Electrochem. Soc. 118 (1971) 510–7.CrossRefGoogle Scholar
  15. [15]
    Y. Oren and A. Soffer, ibid. 125 (1978) 869–75.Google Scholar
  16. [16]
    Idem, J. Appl. Electrochem. 13 (1983) 473–87.Google Scholar
  17. [17]
    Idem, ibid. 13 (1983) 489–505.Google Scholar
  18. [18]
    M. D. Andelman, US Patent 5 415 768, 768,16 May (1995).Google Scholar
  19. [19]
    Idem, US Patent 5360 540, 1 Nov. (1994).Google Scholar
  20. [20]
    T. Otowa, International Patent Appl. PCT/US94/05364, 24 Nov. (1994).Google Scholar
  21. [21]
    J. C. Farmer, US Patent 5425 858, 20 June (1995).Google Scholar
  22. [22]
    J. C. Farmer, D. V. Fix, G. V. Mack, R. W. Pekala and J. F. Poco, Proceedings of the 5th International Conference on Radiation Waste Management Environment Remediation, Berlin, Germany, 3–9 September (1995), American Society of Mechanical Engineers (ASME), New York, vol. 2, (1995) pp. 1215–20.Google Scholar
  23. [23]
    J. C. Farmer, D. V. Fix, G. V. Mack, R. W. Pekala and J. F. Poco, Proceedings of the 1995 International SAMPE Technical Conference, Albuquerque, NM, 9 12 October (1995), Society for the Advancement of Material and Process Engineering (SAMPE), Covina, CA, vol. 27 (1995) pp. 294–304.Google Scholar
  24. [24]
    J. C. Farmer, D. V. Fix, G. V. Mack, R. W. Pekala and J. F. Poco, J. Electrochem. Soc. 143 (1996) 159–69.Google Scholar
  25. [25]
    Keitaro Katsu, Nippon Electric Co., Japan Patent Appl. 91-303 689 (1991).Google Scholar
  26. [26]
    Matsushita Electric Industrial Co., Ltd., Japan Patent Appl. 83-89451 (1983).Google Scholar
  27. [27]
    J. Tabuchi, Y. Kibi, T. Saito and A. Ochi, ‘Electrochemical Properties of Activated Carbon/Carbon Composites for Electric Double-layer Capacitor in New Sealed Rechargeable Batteries and Supercapacitors’, presented at the 183rd Electrochemical Society Meeting, Honolulu, HI, 16–21 May (1993).Google Scholar
  28. [28]
    Mitsui Petrochem Ind., Japan Patent Appl. 89-210 642 (1989).Google Scholar
  29. [29]
    S. T. Mayer, R. W. Pekala and J. L. Kaschmitter, J. Electrochem. Soc. 140 (1993) 446–51.Google Scholar
  30. [30]
    F. M. Delnick, D. Ingersoll and D. Firsich, ‘Double-layer Capacitance of Carbon Foam Electrodes’, SAND-93–2681, Sandia National Laboratory, Albuquerque, NM (1993).Google Scholar
  31. [31]
    R. W. Pekala, S. T. Mayer, J. F. Poco and J. L. Kaschmitter, ‘Novel forms of carbon II’, (edited by C. L. Renschler, D. M. Cox, J. J. Pouch and Y. Achiba), MRS Symp. Proc. 349 (1994) 79.Google Scholar
  32. [32]
    J. Wang, L. Angnes, H. Tobias, R. A. Roesner, K. C. Hong, R. S. Glass, F. M. Kong and R. W. Pekala, Anal. Chem. 65 (1993) 2300–3.Google Scholar
  33. [33]
    J. L. Kaschmitter, S. T. Mayer and R. W. Pekala, US Patent 5 260 855.Google Scholar
  34. [34]
    R. W. Pekala, C. T. Alviso, ‘Novel forms of carbon’, (edited by C. L. Renschler, J. J. Pouch and D. M. Cox), MRS Symp. Proc. 270 (1992) 3.Google Scholar
  35. [35]
    R. W. Pekala, ‘Ultrastructure processing of advanced materials’, (edited by D. R. Uhlmanjn and D. R. Ulrich), John Wiley & Sons, New York (1992) pp. 711–17.Google Scholar
  36. [36]
    A. J. Bard and L. R. Faulkner, ‘Electrochemical methods, fundamentals and applications’, John Wiley & Sons, New York (1980) pp. 500–15.Google Scholar
  37. [37]
    W. J. Dixon and F. J. Massey, Jr., ‘Introduction to statistical analysis’, 3rd edn., McGraw-Hill, San Francisco, CA (1969), chapter 11, pp. 193–6.Google Scholar
  38. [38]
    C. J. King, ‘Separation processes’, 2nd edn., McGraw-Hill, San Francisco, CA (1980) pp. 661–4.Google Scholar
  39. [39]
    J. S. Newman, ‘Electrochemical systems’, 2nd edn., Prentice Hall, Englewood Cliffs, NJ (1991) pp. 89–94.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • J. C. Farmer
    • 1
  • D. V. Fix
    • 1
  • G. V. Mack
    • 1
  • R. W. Pekala
    • 1
  • J. F. Poco
    • 1
  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations