Advertisement

Plant Cell Reports

, Volume 12, Issue 2, pp 70–73 | Cite as

Induction of berberine biosynthesis by cytokinins in Thalictrum minus cell suspension cultures

  • Masakazu Hara
  • Toshihito Kitamura
  • Hirosi Fukui
  • Mamoru Tabata
Article

Abstract

Production of berberine could be induced by adding 6-benzylaminopurine (BAP) to Thalictrum minus cells, cultured in suspension in a medium containing 2,4-dichlorophenoxyacetic acid (2,4-D), early in the growth cycle. In the presence of BAP, the precursor, L-tyrosine, was rapidly converted into berberine which was then released into the medium, whereas substantial amounts of the intermediates, tyramine and dopamine, accumulated in non-berberine-producing cells grown in the same 2,4-D-containing medium without BAP. These results suggest that BAP activated enzymatic reactions subsequent to the formation of the amines in the biosynthesis of berberine.

Keywords

Dopamine Cell Suspension Suspension Culture Enzymatic Reaction Cell Suspension Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

2,4-D

2,4-dichlorophenoxyacetic acid

BAP

6-benzylaminopurine

NAA

1-naphthaleneacetic acid

IAP

6-isopentenylaminopurine

LS medium

Linsmaier-Skoog medium

“Growth medium”

LS medium containing 10-6 M 2,4-D

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Frenzel, T. and Zenk, M. H. (1990) Phytochemistry 29, 3505.Google Scholar
  2. Galneder, E., Rueffer, M., Wanner, G., Tabata, M., Zenk, M. H. (1988) Plant Cell Rep. 7, 1.Google Scholar
  3. Ikuta A. (1988) In: Cell Culture and Somatic Cell Genetics of Plants Vol. 5, Phytochemicals in Plant Cell Cultures (F. Constabel and I. K. Vasil, eds.), Academic Press, San Diego, pp. 290–296.Google Scholar
  4. Linsmaier, E.M. and Skoog, F. (1965) Physiol. Plant. 18, 100.Google Scholar
  5. Marques, I. A. and Brodelius, P. E. (1988) Plant Physiol. 88, 46.Google Scholar
  6. Nakagawa, K., Fukui, H., Tabata, M. (1986) Plant Cell Rep. 5, 69.Google Scholar
  7. Nakagawa, K., Konagai, A., Fukui, H., Tabata, M. (1984) Plant Cell Rep. 3, 254.Google Scholar
  8. Rueffer, M. and Zenk, M. H. (1987) Z. Naturforsch. 42 c, 319.Google Scholar
  9. Seitz, H. U. and Hinderer, W. (1988) In: Cell Culture and Somatic Cell Genetics of Plants Vol. 5, Phytochemicals in Plant Cell Cultures (F. Constabel and I. K. Vasil, eds.), Academic Press, San Diego, pp. 66.Google Scholar
  10. Stadler, R., Kutchan, T. M., Zenk, M. H. (1989) Phytochemistry 28, 1083.Google Scholar
  11. Tabata, M., Yamamoto, H., Hiraoka, N., Marumoto, Y., Konosima, M. (1971) Phytochemistry 10, 723.Google Scholar
  12. Tanahashi, T. and Zenk, M. H. (1990) Phytochemistry 29, 1113.Google Scholar
  13. Yamamoto, H., Nakagawa, K., Fukui, H., Tabata, M. (1986) Plant Cell Rep. 5, 65.Google Scholar
  14. Yamamoto, H., Suzuki, M., Suga, Y., Fukui, H., Tabata, M. (1987) Plant Cell Rep. 6, 356.Google Scholar
  15. Zaprometov, M. N. (1988) In: Cell Culture and Somatic Cell Genetic of Plants Vol. 5, Phytochemicals in Plant Cell Cultures (F. Constabel and I. K. Vasil, eds.), Academic Press, San Diego, pp. 81 -82, 93–94.Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Masakazu Hara
    • 1
  • Toshihito Kitamura
    • 1
  • Hirosi Fukui
    • 1
  • Mamoru Tabata
    • 1
  1. 1.Faculty of Pharmaceutical SciencesKyoto UniversityKyotoJapan

Personalised recommendations