Advertisement

Plant Cell Reports

, Volume 12, Issue 2, pp 61–65 | Cite as

Somatic embryogenesis and plant regeneration from immature cotyledons of watermelon

  • Michael E. Compton
  • D. J. Gray
Article

Abstract

Cotyledon expiants from immature embryos of five watermelon [Citrullus lanatus (Thunb.)Matsum. & Nakai] genotypes were incubated in the dark for three weeks on a modified MS medium containing B5 vitamins, 2,4-D (10, 20 or 40μM), 0.5 μM of either BA or TDZ, and 7 g·1-1 TC agar. Somatic embryos, some with well developed cotyledons, were observed on cotyledon expiants three to four weeks after transfer to MS medium without PGRs and 16h photoperiod. The best PGR combination for somatic embryogenesis was 10 μM 2,4-D and 0.5 μM TDZ Somatic embryogenesis was greatest (30%) when cotyledon expiants were established from 18-day-old immature embryos. Somatic embryos were germinated on MS medium without PGRs. Plants were transferred to Magenta boxes containing ProMix for three weeks before being transplanted to the field where they formed fertile male and female flowers that produced normal fruit.

KeyWords

Citrullus lanatus cucurbits tissue culture 

Abbreviations

PGR

plant growth regulator

BA

benzyladenine

TDZ

thidiazuron

2,4-D

2,4-dichlorophenoxyaceticacid

NAA

α-naphthaleneacetic acid

2,4,5-T

2,4,5-trichlorophenoxyacetic acid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anghel I, Rosu A(1985) Rev. Roum. Biol.-Biol. Végét. 30:43–55.Google Scholar
  2. Barnes LR (1979) Scientia Horticulturae 11:223–227.Google Scholar
  3. Chee PP (1990a) HortScience 25:792–793.Google Scholar
  4. Chee PP (1990b) Plant Cell Rep. 9:245–248.Google Scholar
  5. Chee PP (1991) Plant Cell Rep. 9:620–622.Google Scholar
  6. Chee PP (1992) HortScience 27:59–60.Google Scholar
  7. Chee PP, Slightom JL (1991) J. Amer. Soc. Hort. Sci. 116:1098–1102.Google Scholar
  8. Compton ME, Gray DJ (1993) J. Amer. Soc. Hort. Sci. (In Press).Google Scholar
  9. Dong J-Z, Jia S-R (1991) Plant Cell Rep. 9:559–562.Google Scholar
  10. Gamborg OL, Miller RA, Ojima K (1968) Exp. Cell Res. 50:151–158.Google Scholar
  11. Gray DJ, McColley DW, Compton ME (1993) J. Amer. Soc. Hort. Sci. (In Press).Google Scholar
  12. Homma Y, Sugiyama K, Oosawa K (1991) Japan J. Breed. 41:543–551.Google Scholar
  13. Jelaska S (1972) Planta 103:278–280.Google Scholar
  14. Jelaska S (1974) Physiol. Plant. 31:257–261.Google Scholar
  15. Juretić B, Jelaska S (1991) Plant Cell Rep. 9:623–626.Google Scholar
  16. Kageyama K, Yabe K, Miyajima S (1990) Plant Tissue Cult. Lett. 7:193–198.Google Scholar
  17. Kageyama K, Yabe K, Miyajima S (1991) Japan. J. Breed. 41:273–278.Google Scholar
  18. Ladyman JAR, Girard B (1992) HortScience 27:164–165.Google Scholar
  19. Malepszy S, Nadolska-Orczyk A (1983) Z. Pflanzenphysiol. 111:273–276.Google Scholar
  20. Malepszy S, Niemirowicz-Szczytt K, Wiszniewska J (1982) Acta Biologica 10:218–220.Google Scholar
  21. Murashige T, Skoog F (1962) Physiol. Plant. 15:473–497.Google Scholar
  22. Oridate T, Oosawa K (1986) Japan J. Breed. 36:424–428.Google Scholar
  23. Oridate T, Atsumi H, Ito S, Araki H (1992) Plant Cell Tissue Organ Cult. 29:27–30.Google Scholar
  24. SAS Institute, Inc. (1988) Release 6.03. SAS Institute, Inc., Cary, N.C.Google Scholar
  25. Srivastava DR, Andrianov VM, Piruzian ES (1989) Plant Cell Rep. 8:300–302.Google Scholar
  26. Trulson AJ, Shahin EA (1986a) Plant Sci. 47:35–43.Google Scholar
  27. Trulson AJ, Shahin EA (1986b) Theor. Appl. Genet. 73:11–15.Google Scholar
  28. Zar JH (1984) Biostatistical analysis. Second edition. Prentice-Hall, Inc., Englewood Cliffs, N.J.Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Michael E. Compton
    • 1
  • D. J. Gray
    • 1
  1. 1.Central Florida Research and Education CenterUniversity of Florida, Institute of Food and Agricultural SciencesLeesburgUSA

Personalised recommendations