Advertisement

Journal of Applied Electrochemistry

, Volume 25, Issue 10, pp 940–946 | Cite as

Kinetics and mechanism of the magnesium electrode reaction in molten magnesium chloride

  • A. Kisza
  • J. Kaźmierczak
  • B. Børresen
  • G. M. Haarberg
  • R. Tunold
Papers

Abstract

Using electrochemical impedance spectroscopy (EIS) and relaxation method with galvanostatic perturbation (RM) the kinetics and mechanism of the magnesium electrode reaction in pure molten M9Cl2 have been determined at several temperatures. A three-step electrode process has been found, the high frequency process being pure charge transfer with the low frequency process showing mixed charge transfer-diffusion character. The low frequency step has also been treated as a preceding chemical reaction followed by charge transfer. On the basis of the corresponding exchange current densities and Warburg diffusion impedance, a mechanism of the overall electrode reaction in this melt is proposed.

Keywords

Charge Transfer Electrochemical Impedance Spectroscopy Electrochemical Impedance Spectroscopy Electrode Reaction Relaxation Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. M. Rao, J. Electroanal. Chem. Interfacial Electroch. 249 (1988) 191.Google Scholar
  2. [2]
    R. Tunold, ‘Light Metals’, Trans. Metall. Soc., AIME, (1980) p. 949.Google Scholar
  3. [3]
    B. Børresen, G. Haarberg, R. Tunold and O. Wallevik. Proceedings of the international symposium on molten salt chemistry and technology, Honolulu, HI, The Electrochemical Society, NY, USA 93–9 (1993) p. 193.Google Scholar
  4. [4]
    J. Wypartowicz, T. Ostvold and H. A. Øye, Electrochim. Acta 25 (1980) 151.Google Scholar
  5. [5]
    J. D. van Norman and J. J. Egan, J. Phys. Chem. 67 (1963) 2460.Google Scholar
  6. [6]
    M. H. Brooker and C. H. Huang, Can. J. Chem. 58 (1980) 168.Google Scholar
  7. [7]
    V. A. Maroni, E. J. Hathaway and E. J. Cairns, J. Phys. Chem. 75 (1971) 155.Google Scholar
  8. [8]
    R. J. Capwell, Chem. Phys. Lett. 12 (1972) 443.Google Scholar
  9. [9]
    C. H. Huang and M. H. Brooker, 43 (1976) 180.Google Scholar
  10. [10]
    A. Kisza, Polish J. Chem. 67 (1993) 885.Google Scholar
  11. [11]
    , 68 (1994) 613.Google Scholar
  12. [12]
    A. Kisza and J. Kazmierczak, 68 (1994) 329.Google Scholar
  13. [13]
    J. Thonstad and A. Kisza, ‘Molten salt forum’ Vols. 1–2, Trans. Tech. Publications, Aldermannsdorf, Switzerland (1993–94) p. 195.Google Scholar
  14. [14]
    J. Thonstad, A. Kisza and J. Kazmierczak, J. Appl. Electrochem, in press.Google Scholar
  15. [15]
    A. Kisza, J. Kazmierczak, B. Børresen, G. M. Haarberg and R. Tunold, J. Electrochem. Soc., 142 (1995) 1035.Google Scholar
  16. [16]
    A. J. Bard, R. L. Faulkner, ‘Electrochemical methods, fundamentals and applications’, John Wiley, New York (1980).Google Scholar
  17. [17]
    J. Ross Macdonald, ‘Impedance spectroscopy’, John Wiley, New York (1987).Google Scholar
  18. [18]
    B. Boucamp, ‘Equivalent circuit’, University of Twente, Holland (1988–89).Google Scholar
  19. [19]
    J. Ross Macdonald, Complex nonlinear least squares immittance fitting program', Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC.Google Scholar
  20. [20]
    D. E. Smith, ‘Electroanalytical chemistry’, vol. 1, (edited by A. J. Bard), Dekker, New York (1966) p. 1.Google Scholar
  21. [21]
    M. Sluyters-Rehbach and J. H. Sluyters, ‘Electroanalytical chemistry’, vol. 4, (edited by A. J. Bard), Dekker, New York (1970) p. 1.Google Scholar
  22. [22]
    H. Matsuda, P. Delahay and M. Kleinermann, J. Am. Chem. Soc. 81 (1979) 6379.Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • A. Kisza
    • 1
  • J. Kaźmierczak
    • 1
  • B. Børresen
    • 2
  • G. M. Haarberg
    • 2
  • R. Tunold
    • 1
  1. 1.Institute of Chemistry, University of WroclawWroclawPoland
  2. 2.Department of ElectrochemistryNTH, University of TrondheimTrondheimNorway

Personalised recommendations