Journal of Comparative Physiology A

, Volume 174, Issue 3, pp 345–350 | Cite as

Hygro- and thermoreceptive tarsal organ in the spider Cupiennius salei

  • R. Ehn
  • H. Tichy
Article

Abstract

Extracellular recordings were made from moist cells, dry cells and warm cells in the tip pore sensilla of the spider tarsal organ. Stimulation consisted of a rapid shift from an adapting air stream to another one at different levels of partial pressure of water vapor or of temperature. The moist and the dry cells respond antagonistically to sudden changes in humidity. Both hygroreceptors are unusual in being excited in a synergistic manner by pungent vapors of very volatile, polar substances. Presumably, the hygrosensitivity is superimposed on basically chemosensitive receptors. A moist cell at average differential sensitivity is able to discriminate two successive upward steps in humidity when they differ by 11% relative humidity. For a single dry cell, the difference required for a correct discrimination between two downward humidity steps is 10% relative humidity. The moist and the dry cells are unique in that they occur in combination with warm cells. A single warm cell at average differential sensitivity is able to resolve differences in warming steps down to 0.4°C.

Key words

Moist Dry Warm receptor cells 

Abbreviations

HR

relative humidity

T

temperature

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altner H, Loftus R (1985) Ultrastructure and function of insect thermo and hygroreceptors. Annu Rev Entomol 30:273–295Google Scholar
  2. Becker D (1978) Elektrophysiologische Untersuchungen zur Feuchterezeption durch die styloconischen Sensillen bei Mamestra brassicae L. (Lepidoptera, Noctuidae). Theses, Universität RegensburgGoogle Scholar
  3. Blumenthal H (1935) Untersuchungen über das “Tarsalorgan” der Spinnen. Z Morphol Ökol Tiere 29:667–719Google Scholar
  4. Braun HA, Bade H, Mensel H (1980) Static and dynamic discharge patterns of bursting cold fibers related to hypothetical receptor mechanisms. Pflügers Arch 386:1–9Google Scholar
  5. Braun HA, Schäfer K, Wissing H (1984) Theorien und Modelle zum Übertragungsverhalten thermosensitiver Rezeptoren. Funkt Biol Med 3:26–36Google Scholar
  6. Dumpert K (1978) Spider odor receptor: Electrophysiological proof. Experientia 34:754–755Google Scholar
  7. Foelix RF (1970) Chemosensitive hairs in spiders. J Morph 132:313–334Google Scholar
  8. Foelix RF (1992) Biologie der Spinnen. Thieme, StuttgartGoogle Scholar
  9. Foelix RF, Chu-Wang IW (1973) The morphology of spider sensilla. II. Chemoreceptors. Tissue Cell 5:461–478Google Scholar
  10. Gödde J, Haug T (1990) Analysis of the electrical responses of antennal thermo and hygroreceptors of Antheraea (Saturniidae, Lepidoptera) to thermal, mechanical, and electrical stimuli. J Comp Physiol A 167:391–401Google Scholar
  11. Haug T (1986) Struktur, Funktion und Projektion der antennalen Thermound Hygrorezeptoren von Antheraea pernyi (Lepidoptera: Saturniidae). Theses, Universität RegensburgGoogle Scholar
  12. Hess E, Loftus R (1984) Warm and cold receptors of two sensila on the foreleg tarsi of the tropical bont tick, Amblyomma variegatum. J Comp Physiol A 155:187–195Google Scholar
  13. Itoh T, Yokohari F, Tominaga Y (1984) Two types of antennal hygro and thermoreceptive sensilla of the cricket, Gryllus bimaculatus (De Geer). Zool Science 1:533–543Google Scholar
  14. Kafka WA (1970) Molekulare Wechselwirkungen bei der Erregung einzelner Riechzellen. Z Vergl Physiol 70:105–143Google Scholar
  15. Loftus R (1976) Temperature-dependent dry receptor on antenna of Periplaneta. Tonic response. J Comp Physiol 111:153–170Google Scholar
  16. Loftus R, Corbière-Tichané G (1981) Antennal warm and cold receptors of the cave beetle, Speophyes lucidulus Delar., in sensilla with a lamellated dendrite. I. Response to sudden temperature change. J Comp Physiol 143:443–452Google Scholar
  17. Nishikawa M, Yokohari F, Ishibashi T (1985) The antennal thermoreceptor of the camel cricket, Tachycines asynamorus. J Insect Physiol 31:517–524Google Scholar
  18. Tichy H (1979) Hygroand thermoreceptive triad in antennal sensillum in the stick insect Carausius morosus. J Comp Physiol 132:149–152Google Scholar
  19. Tichy H (1987) Hygroreceptor identification and response characteristics in the stick insect, Carausius morosus. J Comp Physiol A 160:43–53Google Scholar
  20. Tichy H, Loftus R (1990) Response of moist-air receptor on the antenna of the stick insect, Carausius morosus to step changes in temperature. J Comp Physiol A 166:507–516Google Scholar
  21. Waldow U (1970) Elektrophysiologische Untersuchungen an Feuchte-, Trocken und Kälterezeptoren auf der Antenne der Wanderheuschrecke Locusta. Z Vergl Physiol 69:249–283Google Scholar
  22. Yokohari F (1978) Hygroreceptive mechanism in the antenna of the cockroach Periplaneta. J Comp Physiol 124:53–60Google Scholar
  23. Yokohari F (1983) The coelocapitular sensillum, an antennal hygroand thermoreceptive sensillum of the honey bee, Apis mellifera L. Cell Tissue Res 233:355–365PubMedGoogle Scholar
  24. Yokohari F, Tateda H (1976) Moist and dry hygroreceptors for relative humidity of the cockroach, Periplaneta americana L. J Comp Physiol 106:137–152Google Scholar
  25. Yokohari F, Tominaga Y, Tateda H (1982) Antennal hygroreceptors of the honey bee, Apis mellifera L. Cell Tissue Res 226:63–73PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • R. Ehn
    • 1
  • H. Tichy
    • 1
  1. 1.Institut für ZoologieUniversität WienWienAustria

Personalised recommendations