Advertisement

Journal of Comparative Physiology A

, Volume 166, Issue 5, pp 663–673 | Cite as

Histological and electrophysiological investigations on the vibration-sensitive receptors (Herbst corpuscles) in the wing of the pigeon (Columba livia)

  • Wolfgang Hörster
Article

Summary

The Herbst corpuscles (HCs) of the pigeon's wing were investigated both histologically and electrophysiologically. All HCs found in the wing were lamellated, basic type corpuscles without any specialized structures. Their lengths ranged from 67 to 853 μm (mean = 310 μm). Unexpected findings were their large number (about 1000 in the manual part of the wing), their irregular distribution and their preferred orientation (approximately parallel or at right angles to the primary feather follicles). The HCs were highly sensitive to vibrational stimuli applied to wing feathers. Their electrophysiological behaviour has the following characteristics: no spontaneous activity, phase-locked nerve impulses, a 1∶1 stimulus-response relation up to at least 660 Hz at sufficiently high stimulus amplitudes, and a sensitivity to stimulus frequencies up to 1800 Hz. The best frequencies of 52 receptive units for which complete threshold curves were obtained lay between 100 and 900 Hz, 67% of the best frequencies were between 200 and 400 Hz. The threshold amplitudes at best frequency ranged from 0.5 to 150 μm. Two virtually non-overlapping mechanosensitive areas on the wing were identified. One is a very narrow band along the frontal edge and the other covers a large area of the remaining wing. They correspond with the two branches of the radial nerve. The histological and electrophysiological findings suggest that the HCs are part of a vibrational sensory system that is principally involved in flight control. The actual aerodynamic state during flight could be detected by the frontal receptive area, and flight behaviour could be adjusted accordingly. The effectiveness of these corrective reactions would then be assessed on the basis of air current changes along the caudal wing edge by the caudal receptive area. Despite some physiological differences considerable similarities between HCs and Pacinian corpuscles support the hypothesis that they evolved from a unique ancestral lamellar receptor.

Key words

Pigeon Vibrational receptor Receptor arrangement Vibrational sensitivity Flight control 

Abbreviations

HC(s)

Herbst corpuscle(s)

PC(s)

Pacinian corpuscle(s)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham A (1978) Light- and electron microscopic investigations into the ceroma of ducks with particular regard to the Herbst corpuscles. Acta Biol Szeged 24:59–88Google Scholar
  2. Andres KH (1969) Zur Ultrastruktur verschiedener Mechanorezeptoren von höheren Wirbeltieren. Anat Anz 124:551–565Google Scholar
  3. Andres KH, During M von (1973) Morphology of cutaneous receptors. In: Iggo A (ed) Somatosensory system (Handbook of sensory physiology, vol 11). Springer, Berlin Heidelberg New York, pp 3–28Google Scholar
  4. Berkhoudt H (1980) The morphology and distribution of cutaneous mechanoreceptors (Herbst and Grandry corpuscles) in bill and tongue of the mallard (Anas platyrhynchos). Neth J Zool 30:1–34Google Scholar
  5. Bilo D, Lauck A, Wedekind F, Rothe HJ, Nachtigall W (1982) Linear accelerations of a pigeon flying in a wind tunnel. Naturwissenschaften 69:345–346Google Scholar
  6. Bolanowski SJ, Zwislocki JJ (1984) Intensity and frequency characteristics of pacinian corpuscles. I. Action Potentials. J Neurophysiol 51:793–811Google Scholar
  7. Chouchkov C (1979a) Degeneration and regeneration of some mechano-receptors. An ultrastructural study. I. Ultrastructure of denervated Herbst corpuscles. Z Mikrosk Anat Forsch 93:353–364Google Scholar
  8. Chouchkov C (1979b) Degeneration and regeneration of some mechano-receptors. An ultrastructural study. III. Ultrastructure of reinnervated Herbst corpuscles. Z Mikrosk Anat Forsch 93:425–432Google Scholar
  9. Dial KP, Kaplan SR, Goslow GE, Jenkins FA (1988) A functional analysis of the primary upstroke muscles in the domestic pigeon (Columba livia) during flight. J Exp Biol 134:1–16Google Scholar
  10. Donvard PK (1970) Response patterns of cutaneous mechanoreceptors in the domestic duck. Comp Biochem Physiol 35:729–735Google Scholar
  11. Dorward PK, McIntyre AK (1971) Responses of vibration-sensitive receptors in the interosseous region of the duck's hind limb. J Physiol 219:77–87Google Scholar
  12. During M von (1974) The ultrastructure of cutaneous receptors in the skin of Caiman crocodilus. In: Rhein.-Westf. Akad Wiss (ed) Mechanoreception. Westdeutscher Verlag, pp 123–133Google Scholar
  13. Gottschaldt KM (1974) The physiological basis of tactile sensibility in the beak of geese. J Comp Physiol 95:29–47Google Scholar
  14. Gottschaldt KM (1980) Struktur- und Funktionsbeziehungen bei Mechanorezeptoren der Wirbeltiere. Habilitationsschrift, Univ GöttingenGoogle Scholar
  15. Gottschaldt KM, Lausmann S (1974) The peripheral morphological basis of tactile sensibility in the beak of geese. Cell Tissue Res 153:477–496Google Scholar
  16. Graf W (1956) Caliber spectra of nerve fibers in the pigeon (Columba domestica). J Comp Neurol 105:355–363Google Scholar
  17. Grandori F, Pedotti A (1980) Theoretical analysis of mechano-toneural transduction in Pacinian corpuscle. Trans Bio Med Electr 27:559–565Google Scholar
  18. Gregory JE (1973) An electrophysiological investigation of the receptor apparatus of the duck's bill. J Physiol 229:151–164Google Scholar
  19. Halata Z, Munger BL (1980) The ultrastructure of Ruffini and Herbst corpuscles in the articular capsule of domestic pigeon. Anat Rec 198:681–692Google Scholar
  20. Herbst G (1848) Die Pacinischen Körperchen und ihre Bedeutung. Göttinger Anz 3:1617–1629Google Scholar
  21. Herbst G (1850) Weitere Untersuchungen in Betreff der Pacinischen Körperchen. Nachrichten Ges Wiss Göttingen 14:204–207Google Scholar
  22. Hörster W, Shen J, Schwartzkopff J (1983) Electrophysiological studies on the vibrational sensitivity in the pigeon. Naturwissenschaften 70:151–152Google Scholar
  23. Ide C, Nitatori T, Munger BL (1987) The cytology of human Pacinian corpuscles: evidence for sprouting of the central axon. Arch Histol Jpn 50:363–383Google Scholar
  24. Ide C, Yoshida Y, Hayashi S, Takashio M, Munger BL (1988) A re-evaluation of the cytology of cat Pacinian corpuscles. II. The extreme tip of the axon. Cell Tissue Res 253:95–103Google Scholar
  25. Iggo A, Andres KH (1982) Morphology of cutaneous receptors. Ann Rev Neurosci 5:1–31Google Scholar
  26. Johansson RS, Vallbo AB (1983) Tactile sensory coding in the glabrous skin of the human hand. Trends Neurosci 3:27–32Google Scholar
  27. Kornhuber HH (1972) The somatosensory system. Thieme, StuttgartGoogle Scholar
  28. Langford LA, Coggeshall RE (1981) Branching of sensory axons in the peripheral nerve of the rat. J Comp Neurol 203:745–750Google Scholar
  29. Malinovsky L (1967) Die Nervenendkörperchen in der Haut von Vögeln und ihre Variabilität. Z Mikrosk Anat Forsch 77:279–303Google Scholar
  30. McIntyre AK (1965) Perception of vibration. Proc Aust Ass Neurol 3:71–76Google Scholar
  31. Munger BL, Yoshida Y, Hayashi S, Osawa T, Ide C (1988) A re-evaluation of the cytology of cat Pacinian corpuscles. I. The inner core and clefts. Cell Tissue Res 253:83–93Google Scholar
  32. Nachtigall W, Kempf B (1971) Vergleichende Untersuchungen zur flugbiologischen Funktion des Daumenfittichs (Alula spuria) bei Vögeln. Z Vergl Physiol 71:326–341Google Scholar
  33. Necker R (1983) Somatosensory system. In: Abs M (ed) Physiology and behaviour of the pigeon. Academic Press, London, pp 171–192Google Scholar
  34. Necker R (1985) Receptors in the wing of the pigeon and their possible role in bird flight. In: Nachtigall W (ed) Biona Rep 3: Vogelflug. Fischer, Stuttgart New York, pp 433–444Google Scholar
  35. Necker R, Meinecke CC (1984) Conduction velocities and fiber diameters in a cutaneous nerve of the pigeon. J Comp Physiol A 154:817–824Google Scholar
  36. Necker R, Reiner B (1980) Temperature-sensitive mechanoreceptors, thermoreceptors and heat nociceptors in the feathered skin of pigeons. J Comp Physiol 135:201–207Google Scholar
  37. Pennycuick CJ (1968) Power requirements for horizontal flight in the pigeon Columba livia. J Exp Biol 49:527–555Google Scholar
  38. Polacek P (1969) Die Ultrastruktur des Herbstschen Körperchens im Vergleich mit dem Vater-Pacinischen Körperchen. Sb Ved Praci Lek Fak Hrad Kral 12:411–416Google Scholar
  39. Quilliam TA, Armstrong J (1963) Mechanoreceptors. Endeavour 22:55–60Google Scholar
  40. Rayner JMV (1979) A new approach to animal flight mechanics. J Exp Biol 80:17–54Google Scholar
  41. Schildmacher R (1931) Untersuchungen über die Funktion der Herbstschen Körperchen. J Ornithol 74:374–415Google Scholar
  42. Schwartzkopff J, Bremond JC (1963) Méthode de dérivation des potentiels cochléaires chez l'oiseau. J Physiol (Paris) 55:495–518Google Scholar
  43. Schwarze E, Schröder L (1972) Kompendium der Geflügelanatomie. G Fischer, JenaGoogle Scholar
  44. Shen J (1983) A behavioral study of vibrational sensitivity in the pigeon (Columba livia). J Comp Physiol 152:251–255Google Scholar
  45. Shen J, Hörster W, Schwartzkopff J (1983) Vibrational sensitivity in the pigeon as measured by heart-rate conditioning. Naturwissenschaften 70:48–49Google Scholar
  46. Whitehorn D, Howe JF, Lessler MJ, Burgess PR (1974) Cutaneous receptors supplied by myelinated fibers in the cat. I. Number of receptors innervated by a single nerve. J Neurophysiol 37:1361–1372Google Scholar
  47. Ziswiler V, Trnka V (1972) Tastkörperchen im Schlundbereich der Vögel. Rev Suisse Zool 79:20–318Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Wolfgang Hörster
    • 1
  1. 1.Allgemeine PsychologieUniversität KonstanzKonstanzFederal Republic of Germany

Personalised recommendations