Advertisement

Journal of Comparative Physiology A

, Volume 166, Issue 5, pp 633–642 | Cite as

Coxal hair plates in spiders: physiology, fine structure, and specific central projections

  • Ernst-August Seyfarth
  • Werner Gnatzy
  • Klaus Hammer
Article

Summary

Coxal hair-plate sensilla in the spider Cupiennius salei are described with respect to their innervation, central projection pattern, electrical response to mechanical stimulation, and putative behavioral function.
  1. 1.

    Hair plates, each comprising 25–70 hairs, are situated on the ventrolateral leg coxae close to the prosomal joint; during coxal movements they are deflected by the bulging joint membrane. Each plate hair is innervated by one sensory cell.

     
  2. 2.

    Threshold sensitivity lies at 0.5° to 1° of hair deflection. Only distalward deflection excites. During maintained deflections the spike rate declines slowly. These hairs differ from hair sensilla of insects in that we measure no ‘standing potential’, nor do we measure a ‘receptor potential’ accompanying a mechanical stimulus.

     
  3. 3.

    The central projection areas of both hair plates are limited to neuropil of the ipsilateral neuromere.

     
  4. 4.

    Natural stimulus situation and the spike response to maintained deflection suggest that these hairs are used in proprioception and graviception. Yet behavioral changes following selective hair-plate ablations are not very pronounced. Unilateral removal of hair-plates produced significant increases in average body height in 7 of 10 animals, while the angular orientation of the long body axis with respect to gravity remained unchanged after hair-plate removal.

     

Key words

Cuticular hair sensilla Sensory physiology Fine structure Central projections Spiders 

Abbreviations

CNS

central nervous system

TEP

transepithelial potential difference

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babu KS, Barth FG (1989) Central nervous projections of mechanoreceptors in the spider Cupiennius salei Keys. Cell Tissue Res 258:69–82Google Scholar
  2. Bacon JP, Altman JS (1977) A silver intensification method for cobalt-filled neurones in wholemount preparations. Brain Res 138:359–363Google Scholar
  3. Barth FG (1971) Der sensorische Apparat der Spaltsinnesorgane (Cupiennius salei Keys., Araneae). Z Zellforsch 112:212–246Google Scholar
  4. Barth FG (1985) Slit sensilla and the measurement of cuticular strains. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin Heidelberg New York, pp 162–188Google Scholar
  5. Bässler U (1983) Neural basis of elementary behavior in stick insects. Studies of brain function, vol. 10. Springer, Berlin Heidelberg New YorkGoogle Scholar
  6. Bohnenberger J (1981) Matched transfer characteristics of single units in a compound slit sense organ. J Comp Physiol 142:391–402Google Scholar
  7. Eckweiler W, Seyfarth E-A (1988) Tactile hairs and the adjustment of body height in wandering spiders: behavior, leg reflexes, and afferent projections in the leg ganglia. J Comp Physiol A 162:611–621Google Scholar
  8. Eckweiler W, Hammer K, Seyfarth E-A (1989) Long, smooth hair sensilla on the spider leg coxa: sensory physiology, central projection pattern, and proprioceptive function (Arachnida, Araneida). Zoomorphology 109:97–102Google Scholar
  9. Foelix RF (1985) Mechano- and chemoreceptive sensilla. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin Heidelberg New York, pp 118–137Google Scholar
  10. French AS (1988) Transduction mechanisms of mechanosensilla. Annu Rev Entomol 33:39–58Google Scholar
  11. Gaffal KP, Theiss J (1978) The tibial thread-hairs of Acheta domesticus L. (Saltatoria, Gryllidae). The dependence of stimulus transmission and mechanical properties on the anatomical characteristics of the socket apparatus. Zoomorphologie 90:41–51Google Scholar
  12. Gnatzy W (1982) ‘Campaniforme’ Spaltsinnesorgane auf den Beinen von Weberknechten (Opiliones, Arachnida). Verh Dtsch Zool Ges 75:248Google Scholar
  13. Gnatzy W, Tautz J (1980) Ultrastructure and mechanical properties of an insect mechanoreceptor: stimulus-transmitting structures and sensory apparatus of the cereal filiform hairs of Gryllus. Cell Tissue Res 13:441–463Google Scholar
  14. Gnatzy W, Mohren W, Steinbrecht RA (1984) Pheromone receptors in Bombyx mori and Antherae pernyi. II. Morphometric analysis. Cell Tissue Res 25:35–42Google Scholar
  15. Grünert U, Gnatzy W (1987) K + and Ca++ in the receptor lymph of arthropod cuticular mechanoreceptors. J Comp Physiol A 161:329–333Google Scholar
  16. Hackney CM, Altman JS (1982) Cobalt mapping of the nervous system: how to avoid artifacts. J Neurobiol 13:403–411Google Scholar
  17. Hergenröder R, Barth FG (1983) The release of attack and escape behavior by vibratory stimuli in a wandering spider (Cupiennius salei Keys.). J Comp Physiol 152:347–358Google Scholar
  18. Kaestner A (1924) Beiträge zur Kenntnis der Lokomotion der Arachniden. I. Araneae. Arch Naturgesch 90A:1–19Google Scholar
  19. Markl H (1962) Borstenfelder an den Gelenken als Schweresinnesorgane bei Ameisen und anderen Hymenopteren. Z Vergl Physiol 45:475–569Google Scholar
  20. McIver SB (1985) Mechanoreception. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry, and pharmacology, vol 6. Pergamon Press, Oxford, pp 71–132Google Scholar
  21. Melchers M (1963) Zur Biologie und zum Verhalten von Cupiennius salei (Keyserling), einer amerikanischen Ctenide. Zool Jb Syst 91:1–90Google Scholar
  22. Milde JJ, Seyfarth E-A (1988) Tactile hairs and leg reflexes in wandering spiders: physiological and anatomical correlates of reflex activity in the leg ganglia. J Comp Physiol A 162:623–631Google Scholar
  23. Pringle JWS (1938) Proprioception in insects. III. The function of the hair sensilla at the joints. J Exp Biol 15:467–473Google Scholar
  24. Reissland A, Görner P (1985) Trichobothria. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin Heidelberg New York, pp 138–161Google Scholar
  25. Schmidt JM, Smith JJB (1987) The external sensory morphology of the legs and hairplate system of female Trichogramma minutum Riley (Hymenoptera: Trichogrammatidae). Proc R Soc Lond B 232:323–366Google Scholar
  26. Seyfarth E-A (1980) Daily patterns of locomotor activity in a wandering spider. Physiol Entomol 5:199–206Google Scholar
  27. Seyfarth E-A (1985) Spider proprioception: receptors, reflexes, and control of locomotion. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin Heidelberg New York, pp 230–248Google Scholar
  28. Seyfarth E-A, Hammer K (1988) Central projections of cuticular mechanoreceptors in spiders: the specificity of proximal leg sensilla. In: Haupt J (ed) Comptes rendus du XIème colloque d'arachnologie. TUB-Dokumentation 38. Berlin, pp 23–28Google Scholar
  29. Seyfarth E-A, Bohnenberger J, Thorson J (1982) Electrical and mechanical stimulation of a spider slit sensillum: outward current excites. J Comp Physiol 147:423–432Google Scholar
  30. Seyfarth E-A, Eckweiler W, Hammer K (1985) Proprioceptors and sensory nerves in the legs of a spider, Cupiennius salei (Arachnida, Araneida). Zoomorphology 105:190–196Google Scholar
  31. Thorson J, Biederman-Thorson M (1974) Distributed relaxation processes in sensory adaptation. Science 183:161–172Google Scholar
  32. Thurm U (1962) Ableitung der Rezeptorpotentiale und Nervenimpulse einzelner Cuticula-Sensillen bei Insekten. Z Naturforsch 17:285–286Google Scholar
  33. Thurm U (1963) Die Beziehungen zwischen mechanischen Reizgrößen und stationären Erregungszuständen bei Borstenfeld-Sensillen von Bienen. Z Vergl Physiol 46:351–382Google Scholar
  34. Thurm U (1984) Beiträge der Ultrastrukturforschung zur Aufklärung sensorischer Mechanismen. Verh Dtsch Zool Ges 77:89–103Google Scholar
  35. Thurm U, Küppers J (1980) Epithelial physiology of insect sensilla. In: Locke M, Smith D (eds) Insect biology in the future. Academic Press, New York, pp 735–763Google Scholar
  36. Thurm U, Wessel G (1979) Metabolism-dependent transepithelial potential differences at epidermal receptors of arthropods. I. Comparative data. J Comp Physiol 134:119–130Google Scholar
  37. Tyrer NM, Bacon JP, Davies CA (1979) Sensory projections from the wind-sensitive head hairs of the locust Schistocerca gregaria. Cell Tissue Res 203:79–92Google Scholar
  38. Vedel JP (1986) Morphology and physiology of a hair plate sensory organ located on the antenna of the rock lobster Palinurus vulgaris. J Neurobiol 17:65–76Google Scholar
  39. Wendler G (1964) Laufen und Stehen der Stabheuschrecke Carausius morosus: Sinnesborstenfelder in den Beingelenken als Glieder von Regelkreisen. Z Vergl Physiol 48:198–250Google Scholar
  40. Wong RKS, Pearson KG (1976) Properties of the trochanteral hair plate and its function in the control of walking in the cockroach. J Exp Biol 64:233–249Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Ernst-August Seyfarth
    • 1
  • Werner Gnatzy
    • 1
  • Klaus Hammer
    • 1
  1. 1.Zoologisches Institut der J.W. Goethe-UniversitätFrankfurt am Main 11Germany

Personalised recommendations