Geometriae Dedicata

, Volume 62, Issue 1, pp 1–17 | Cite as

Penrose tilings as coverings of congruent decagons

  • Petra Gummelt
Article

Abstract

The open problem of tiling theory whether there is a single aperiodic two-dimensional prototile with corresponding matching rules, is answered for coverings instead of tilings. We introduce admissible overlaps for the regular decagon determining only nonperiodic coverings of the Euclidean plane which are equivalent to tilings by Robinson triangles. Our work is motivated by structural properties of quasicrystals.

Mathematical Subject Classifications (1991)

52C20 82D25 

Key words

tiling Penrose tiling aperiodic tile quasicrystal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ammann, R., Grünbaum, B. and Shephard, G. C.: Aperiodic tiles, Discrete Comput. Geom. 8 (1992), 1–25.Google Scholar
  2. 2.
    Baake, M., Schlottmann, M. and Jarvis, P. D.: Quasiperiodic tilings with tenfold symmetry and equivalence with respect to local derivability, J. Phys. A 24 (1991), 4637–4654.Google Scholar
  3. 3.
    Burkov, S. E.: Structure Model of the AL-Cu-Co Decagonal Quasicrystal, Phys. Rev. Lett. 67 (1991), 614–618.Google Scholar
  4. 4.
    Burkov, S. E.: Modeling decagonal quasicrystals: random assembly of interpenetrating decagonal clusters, J. Phys. I France 2 (1992), 695–706.Google Scholar
  5. 5.
    Fuijiwara, T. and Ogava, T.: Quasicrystals, Berlin, 1990.Google Scholar
  6. 6.
    Gardner, M.: Mathematical Games. Extraordinary nonperiodic tiling that enriches the theory of tiles, Scientif. Amer. 236 (1977), 110–121.Google Scholar
  7. 7.
    Grünbaum, B. and Shephard, G. C.: Tilings and Patterns, Freeman, New York, 1987.Google Scholar
  8. 8.
    Gummelt, P.: Construction of Penrose tilings by a single aperiodic protoset, Proc. 5th Internat. Conf. on Quasicrystals, Avignon, 1995, 84–87.Google Scholar
  9. 9.
    Jarić, M.: Aperiodicity and Order, Vol. 1: Introduction to Quasicrystals, Vol. 2: Introduction to the Mathematics of Quasicrystals, San Diego, 1988 and 1989.Google Scholar
  10. 10.
    Jeong, H. C. and Steinhardt, P. J.: A cluster approach for quasicrystals, Phys. Rev. Lett. 73 (1994), 1943.Google Scholar
  11. 11.
    Penrose, R.: Pentaplexity, Eureka 39 (1978), 16–22.Google Scholar
  12. 12.
    Sasisekharan, V.: A new method for generation of quasi-periodic structures with n fold axes: Application to five and seven folds, J. Phys. India (Pramana) 26 (1986), L283-L293.Google Scholar
  13. 13.
    Steurer, W.: The Structure of Quasicrystals, Zeitschrift für Kristallographie 190 (1990), 179–234.Google Scholar
  14. 14.
    Senechal M. and Taylor, J.: Quasicrystals: the view from Les Houches, Math. Intelligencer 12 (1990), 54–64.Google Scholar
  15. 15.
    Senechal, M. The Geometry of Quasicrystals, Cambridge University Press, 1995.Google Scholar
  16. 16.
    DiVincenzo, D. P. and Steinhardt, P. J.: Quasicrystals: the State of the Art, Directions in Condensed Matter Physics, 11, NJ, 1991.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Petra Gummelt
    • 1
  1. 1.Fachbereich Mathematik und InformatikErnst-Moritz-Arndt-Universität GreifswaldGreifswaldGermany

Personalised recommendations