, Volume 182, Issue 1, pp 142–148 | Cite as

Phenolics of mycorrhizas and non-mycorrhizal roots of Norway spruce

  • Babette Münzenberger
  • Jürgen Heilemann
  • Dieter Strack
  • Ingrid Kottke
  • Franz Oberwinkler


The occurrence and amount of soluble and insoluble phenolics in mycorrhizal and non-mycorrhizal roots of Picea abies (L.) Karst, were investigated, p-Hydroxybenzoic acid glucoside, picein, piceatannol and its glucoside, isorhapontin, catechin and ferulic acid could be identified by high-performance liquid chromatography in mycorrhizas of Picea abies-Lactarius deterrimus and Picea abies-Laccaria amethystea. Both types were collected from axenic cultures and the latter also from a spruce stand. The same phenolics occurred in non-mycorrhizal short roots from sterile cultures. However, the amounts of p-hydroxybenzoic acid glucoside, picein, catechin and cell wall-bound ferulic acid were considerably reduced in mycorrhizas from axenic culture, whereas the hydroxystilbenes piceatannol, its glucoside and worhapontin were not significantly reduced. Pure mycelia of Laccaria amethystea (Bull.) Murr, and Lactarius deterrimus Gröger were also analysed for phenolic compounds. Both fungal species contained none of the identified phenolics. The results are discussed with respect to mycorrhization in different mycorrhizal types.

Key words

Ectomycorrhiza Ferulic acid Mycorrhiza Phenolics Picea Picein 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alcubilla, M. (1970) Pilzhemmstoffe in der Fichtenrinde. Landwirtsch. Forsch. 25, 96–101Google Scholar
  2. Alcubilla, M., Diaz-Palacio, M.P., Kreutzer, K., Laatsch, W., Rehfuess, K.-E., Wenzel, G. (1971) Beziehungen zwischen dem Ernährungszustand der Fichte (Picea abies Karst.), ihrem Kernfäulebefall und der Pilzhemmwirkung ihres Basts. Eur. J. For. Pathol. 1, 100–114Google Scholar
  3. Alcubilla, M., Heibl, R., Rehfuess, K.-E. (1987) Chemische Zusamensetzung und fungistatische Wirkung gegenüber Heterobasidion annosum von Wurzelbast und -holz der Fichte (Picea abies [L.] Karst.) in Abhängigkeit vom Standort. Mitt. Ver. Forstl. Standortskunde Forstpflanzenzüchtung 33, 81–92Google Scholar
  4. Codignola, A., Verotta, L., Spanu, P., Maffei, M., Scannerini, S., Bonfante-Fasolo, P. (1989) Cell wall bound-phenols in roots of vesicular-arbuscular mycorrhizal plants. New Phytol. 112, 221–228Google Scholar
  5. Dittrich, P. (1970) Untersuchungen über den Umsatz sekundärer Pflanzenstoffe in den Nadeln von Picea abies L. Dissertation, University of München, FRGGoogle Scholar
  6. Dittrich, P., Kandier, O. (1971) Einfluß der Jahreszeit auf Bildung und Umsatz von Phenolkörpern in der Fichte (Picea abies [L.] Karst.). Ber. Dtsch. Bot. Ges. 84, 465–472Google Scholar
  7. Esterbauer, H.D., Grill, D., Beck, G. (1975) Untersuchungen über Phenole in Nadeln von Picea abies. Phyton 17, 87–99Google Scholar
  8. Fisch, M.H., Flick, B.H., Arditti, J. (1973) Structure and antifungal activity of hircinol, loroglossol and orchinol. Phytochemistry 12, 437–441Google Scholar
  9. Friend, J. (1976) Lignification in infected tissues. In: Biochemical aspects of plant parasite relations, pp. 291–304, Friend, J., Threlfall, D.R., eds. Academic Press, London New YorkGoogle Scholar
  10. Friend, J. (1981) Plant phenolics, lignification and plant disease. In: Progress in phytochemistry, vol. 7, pp. 197–261, Harborne, J.B., Swain, T., eds. Pergamon Press, New YorkGoogle Scholar
  11. Fry, S.C. (1982) Phenolic components of the primary cell wall: Feruloylated disaccharides of dD-galactose and l-arabinose from spinach polysaccharide. Biochem. J. 203, 493–504Google Scholar
  12. Fry, S.C. (1986) Cross-linking of matrix polymers in the growing cell walls of Angiosperms. Ann. Rev. Plant Physiol. 37, 165–186Google Scholar
  13. Fry, S.C. (1987) Intracellular feruloylation of pectic polysaccharides. Planta 171, 205–211Google Scholar
  14. Giltrap, N.J., Lewis, D.H. (1982) Catabolic repression of the synthesis of pectin-degrading enzymes by Suillus luteus (L. ex Fr.) S.F. Gray, and Hebeloma oculatum. Bruchet. New Phytol. 90, 485–93Google Scholar
  15. Gorham, J. (1980) The stilbenoids. In: Progress in phytochemistry, vol. 6, pp. 203–252, Reinhold, L., Harborne, J.B., Swain, T., eds. Pergamon Press, Oxford New YorkGoogle Scholar
  16. Harborne, J.B. (1980) Plant phenolics. In: Encyclopedia of plant physiology, N.S., vol. 8: Secondary plant products, pp. 329–402, Bell, E.A., Charlwood, B.V., eds. Springer, Berlin Heidelberg New YorkGoogle Scholar
  17. Harborne, J.B. (1982) Introduction to ecological biochemistry. Academic Press, LondonGoogle Scholar
  18. Harris, P.J., Hartley, R.D. (1980) Phenolic constituents of the cell walls of Monocotyledons. Biochem. Syst. Ecol. 8, 153–160Google Scholar
  19. Hartley, R.D., Harris, P.J. (1981) Phenolic constituents of the cell walls of Dicotyledons. Biochem. Syst. Ecol. 9, 189–203Google Scholar
  20. Hillis, W.E. (1977) Secondary changes in wood. Recent Adv. Phytochem. 11, 247–309Google Scholar
  21. Hillis, W.E., Ishikura, N. (1969) The extractives of the mycorrhizas and roots of Pinus radiata and Pseudotsuga menziesii. Aust. J. Biol. Sci. 22, 1425–1436Google Scholar
  22. Hillis, W.E., Ishikura, N., Foster, R.C., Marks, G.C. (1968) The role of extractives in the formation of ectotrophic mycorrhizae. Phytochemistry 7, 409–410Google Scholar
  23. Ingham, J.L. (1973) Disease resistance in higher plants: the concept of pre-infectional and post-infectional resistance. Phytopathol. Z. 78, 314–335Google Scholar
  24. Jorgensen, E. (1961) The formation of pinosylvin and its monomethylether in the sapwood of Pinus resinosa Ait. Can. J. Bot. 39, 1765–1772Google Scholar
  25. Kottke, I., Guttenberger, M., Hampp, R., Oberwinkler, F. (1987) An in vitro method for establishing mycorrhizae on coniferous tree seedlings. Trees 1, 191–194Google Scholar
  26. Laatsch, W., Alcubilla, M., Wenzel, G., Aufsess, H.v. (1968) Beziehungen zwischen dem Standort und der Kernfäule-Disposition der Fichte (Picea abies Karst.). Forstwiss. Centralbl. 87, 193–203Google Scholar
  27. Li, C.Y., Lu, K.C., Trappe, J.M., Bollen, W.B. (1972) Poria weirii- inhibiting and other phenolic compounds in roots of red alder and Douglas-fir. Microbios 5, 65–68Google Scholar
  28. Lindeberg, G., Lindeberg, M. (1977) Pectinolytic ability of some mycorrhizal and saprophytic hymenomycetes. Arch. Microbiol. 115, 9–12Google Scholar
  29. Ling-Lee, M., Chilvers, G.A., Ashford, A.E. (1977) A histochemical study of phenolic materials in mycorrhizal and uninfected roots of Eucalyptus fastigata Deane and Maiden. New Phytol. 78, 313–328Google Scholar
  30. Lyr, H. (1963) Zur Frage des Streuabbaues durch ektotrophe Mykorrhizapilze. In: Mykorrhiza, Intern. Myk. Symposium Weimar 1960, pp. 123–145. Fischer, JenaGoogle Scholar
  31. Malajczuk, N., Molina, R., Trappe, J.M. (1984) Ectomycorrhiza formation in Eucalyptus. II. The ultrastructure of compatible and incompatible mycorrhizal fungi and associated roots. New Phytol. 96, 43–53Google Scholar
  32. Melin, E., Nilsson, H. (1958) Translocation of nutrient elements through mycorrhizal mycelium to pine seedlings. Bot. Not. 111, 251–256Google Scholar
  33. Osswald, W.F., Elstner, E.F. (1986) Fichtenerkrankungen in den Hochlagen der Bayerischen Mittelgebirge. Ber. Dtsch. Bot. Ges. 99, 313–339Google Scholar
  34. Osswald, W.F., Zieboll, S., Schütz, W., Firl, J., Elstner, E.F. (1987) p-Hydroxyacetophenone a fungitoxic compound in spruce needles. Z. Pflanzenkr. Pflanzenschutz 94, 572–577Google Scholar
  35. Pais, M.S., Barroso, J. (1983) Localization of polyphenoloxidases during the establishment of Ophrys lutea endomycorrhizas. New Phytol. 95, 219–222Google Scholar
  36. Piché, Y., Fortin, J.A., Lafontaine, J.G. (1981) Cytoplasmatic phenols and polysaccharides in ectomycorrhizal and non-mycorrhizal short roots of pine. New Phytol. 88, 695–703Google Scholar
  37. Prior, C. (1976) Resistance by Corsican pine to attack by Heterobasidion annosum. Ann. Bot. 40, 261–279Google Scholar
  38. Shain, L. (1967) Resistance of sapwood in stems of Loblolly pine to infection by Fames annosus. Phytopathology 57, 1034–1045Google Scholar
  39. Shain, L. (1979) Dynamic responses of differentiated sapwood of Norway spruce to infection by Fames annosus. Phytopathology 69, 1143–1147Google Scholar
  40. Strack, D., Heilemann, J., Mömken, M., Wray, V. (1988) Cell wallconjugated phenolics from coniferae leaves. Phytochemistry 27, 3517–3521Google Scholar
  41. Strack, D., Heilemann, J., Wray, V., Dirks, H. (1989) Structures and accumulation patterns of soluble and insoluble phenolics from Norway spruce needles. Phytochemistry 28, 2071–2078Google Scholar
  42. Sylvia, D.M. (1983) Role of Laccaria laccata in protecting primary roots of Douglas-fir from root rot. Plant Soil 71, 299–302Google Scholar
  43. Sylvia, D.M., Sinclair, W.A. (1983) Phenolic compounds and resistance to fungal pathogens induced in primary roots of Douglasfir seedlings by the ectomycorrhizal fungus Laccaria laccata. Phytopathology 73, 390–397Google Scholar
  44. Wenzel, G., Diaz-Palacio, M.P. (1970) Beziehungen zwischen dem Ernährungszustand der Fichte (Picea abies Karst.) und dem Pilzhemmstoffgehalt ihres Bastes/ I. Einfluß der Austrocknung des durch wurzelten Bodenraumes. Z. Pflanzenernähr. Bodenkde 127, 56–63Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Babette Münzenberger
    • 1
  • Jürgen Heilemann
    • 2
  • Dieter Strack
    • 2
  • Ingrid Kottke
    • 1
  • Franz Oberwinkler
    • 1
  1. 1.Institut für Botanik, Spezielle Botanik, Mykologie, Eberhard-Karls-Universität TübingenTübingen
  2. 2.Institut für Pharmazeutische Biologie der Technischen Universität BraunschweigBraunschweigGermany

Personalised recommendations