Pretecto-tectal influences
- 27 Downloads
- 5 Citations
Abstract
(1)From the dorsal surface of the toad (Bufo b. spinosus, B. marinus) optic tectum (OT), field potentials (FP) were recorded at 9 reference sites in response to electrical stimulation of the optic nerve (ON). The FP showed 4 main components, besides an initial deflection attributed to axonal potentials: two negative waves N1, N2 (attributed to postsynaptic excitatory processes) and two positive waves P2, P3 (attributed to postsynaptic inhibitory processes). The responses across the reference sites were rather similar in different individuals. (2) Electrical stimulation of an area in the ipsilateral pretectal lateral posterodorsal and posterior (Lpd/P) thalamic region evoked tectal FPs showing mainly a negative and a positive wave. Regarding wave amplitudes, the FPs displayed disproportionalities across the reference sites. (3) Electrical stimulation of the contralateral Lpd/P evoked mainly a positive wave in the tectal FP whose disproportionality corresponded roughly to the one obtained to ipsilateral Lpd/P stimulation. (4) The inital negative wave of the tectal FP in response to ON stimulation was nearly abolished, if Lpd/P stimulation preceded ON stimulation at a delay of 17–25 ms. (5) Since FPs showed adaptation to repetitive stimulation, various experiments were carried out to distinguish adaptation phenomena from effects of neuronal interactions between Lpd/P and OT. (6) The results provide evidence that ON- and Lpd/P-mediated inputs interact in superficial tectal layers, whereby pretectotectal input suppresses retinotectal excitatory information transfer. Input of Lpd/P to the contralateral superficial OT suggests postsynaptic inhibition. This study provides no information about pretectal inputs to deeper tectal layers, which anatomically are known to exist.
Key words
Optic tectum Evoked field potentials Pretectal/tectal interaction ToadAbbreviations
- A-I
recording sites from the dorsal tectal surface
- Dt
delay between Lpd/P and ON stimulation
- EPSPIPSP
excitatory and inhibitory postsynaptic potentials, respectively
- FP
field potential
- L
latency of FP waves
- ON
optic nerve
- OT
optic tectum
- Lpd/P
lateral posterodorsal and posterior pretectal thalamic region
- Lpv
lateral posteroventral pretectal thalamic nucleus
- N, P
negative and positive waves of FPs, respectively
- PRE
presynaptic axonal input
- TH
pretectal thalamic neurons
Preview
Unable to display preview. Download preview PDF.
References
- Buxbaum-Conradi H, Ewert J-P (1995) Pretecto-tectal influences I. What the toad's pretectum tells its tectum: an antidromic stimulation/recording study. J Comp Physiol A 176: 169–180Google Scholar
- Chung SH, Bliss TVP, Keating MJ (1974) The presynaptic organization of optic afferents in the amphibian tectum. Proc R Soc Lond Bs 187: 421–447Google Scholar
- Colmers WF, Lukowiak K, Pittman QJ (1987) Presynaptic action of neuropeptide Y in area CA1 of the rat hippocampal slice. J Physiol (Lond) 383: 285–299Google Scholar
- Debski EA, Constantine-Paton M (1990) Evoked pre and post synaptic activity in the optic tectum of the cannulated tadpole. J Comp Physiol A 167: 377–390Google Scholar
- Ewert J-P (1968) Der Einfluß von Zwischenhirndefekten auf die Visuomotorik im Beute- und Fluchtverhalten der Erdkröte (Bufo bufo L). Z Vergl Physiol 61: 41–70Google Scholar
- Ewert J-P (1971) Single unit response of the toad (Bufo americanus) caudal thalamus to visual objects. Z Vergl Physiol 74: 81–102Google Scholar
- Ewert J-P (1987) Neuroethology of releasing mechanisms: prey-catching in toads. Behav Brain Sci 10: 337–405Google Scholar
- Ewert J-P (1989) The release of visual behavior in toads: Stages of parallel/hierarchical information processing. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York, London, pp 39–120Google Scholar
- Ewert J-P, Wietersheim Av (1974a) Musterauswertung durch tectale und thalamus/praetectale Nervennetze im visuellen System der Kröte (Bufo bufo L). J Comp Physiol 92: 131–148Google Scholar
- Ewert J-P, Wietersheim Av (1974b) Der Einfluß von Thalamus/Praetectum-Defekten auf die Antwort von TectumNeuronen gegenüber bewegten visuellen Mustern bei der Kröte (Bufo bufo L). J Comp Physiol 92: 149–160Google Scholar
- Ewert J-P, Schwippert WW, Beneke TW (1990) Parallel distributed processing of configural moving objects in the toad's visual system. In: Eckmiller R, Hartmann G, Hauske G (eds) Parallel processing in neural systems and computers. North-Holland, Amsterdam New York Oxford Tokyo, pp 109–112Google Scholar
- Gernert M, Ewert J-P (1995) Neuropharmacological effects on visually evoked field potentials in the cone toads superficial optic tectum (submitted)Google Scholar
- Gruberg ER (1989) Nucleus isthmi and optic tectum in frogs. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 341–356Google Scholar
- Grüsser O-J, Grüsser-Cornehls U (1976) Neurophysiology of the anuran visual system. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 297–385Google Scholar
- Halgren E (1990) Human evoked potentials. In: Boulton AA, Baker GB, Vanderwolf CH (eds) Neuromethods 15, neurophysiological techniques, applications to neural systems. Humana Press, Clifton New Jersey, pp 147–275Google Scholar
- Humphrey DR, Schmidt EM (1990) Extracellular single unit recording method. In: Boulton AA, Baker GB, Vanderwolf CH (eds) Neuromethods 15, neurophysiological techniques, Applications to neural systems. Humana Press, Clifton, New Jersey, pp 1–64Google Scholar
- Ingle D (1973) Disinhibition of tectal neurons by pretectal lesions in the frog. Science 180: 422–424PubMedGoogle Scholar
- Jassik-Gerschenfeld D, Hardy O (1984) The avian optic tectum: Neurophysiology and behavioral correlations. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York London, pp 649–686Google Scholar
- Kozicz T, Lázár G (1994) The origin of tectal NPY immunopositive fibers in the frog. Brain Res 635: 345–348Google Scholar
- Kuljis RO, Karten HJ (1982) Laminar organization of peptide-like immunoreactivity in the anuran optic tectum. J Comp Neurol 212: 188–201Google Scholar
- Kuljis RO, Karten HJ (1983) Modifications in the laminar organization of peptide-like immunoreactivity in the anuran optic tectum following retinal deafferentation. J Comp Neurol 217: 239–251Google Scholar
- Lázár G (1984) Structure and connections of the frog optic tectum. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York, pp 185–210Google Scholar
- Lázár G (1989) Cellular architecture and connectivity of the frog's optic tectum and pretectum. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 175–199Google Scholar
- Leung L-WS (1990) FPs in the central nervous system-recording, analysis, and modeling. In: Boulton AA, Baker GB, Vanderwolf CH (eds) Neuromethods 15, neurophysiological techniques, applications to neural systems. Humana Press, Clifton New Jersey, pp 277–312Google Scholar
- Lewis D, Teyler TJ (1986) Long-term potentiation in the goldfish optic tectum. Brain Res 375: 246–250Google Scholar
- Matsumoto N (1989) Morphological and physiological studies of tectal and pretectal neurons in the frog. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 201–222Google Scholar
- Matsumoto N, Bando T (1980) Excitatory synaptic potentials and morphological classification of tectal neurons of the frog. Brain Res 192: 39–48Google Scholar
- Matsumoto N, Schwippert WW, Ewert J-P (1986) Intracellular activity of morphologically identified neurons of the grass frog's optic tectum in response to moving configurational visual stimuli. J Comp Physiol A 159: 721–739Google Scholar
- McCawley EL (1949) Certain actions of curare on the central nervous system. J Pharmacol 97: 129–139Google Scholar
- Merchenthaler I, Lázár G, Maderdrut JL (1989) Distribution of proenkephalin-derived peptides in the brain of Rana esculenta. J Comp Neurol 281: 23–39Google Scholar
- Neary T, Northcutt RG (1983) Nuclear organization of the bullfrog diencephalon. J Comp Neurol 213: 262–278Google Scholar
- Peretz B (1969) Vertical distribution of optic nerve fiber terminations in the frog optic tectum. Am J Physiol 217: 181–187Google Scholar
- Sachs L (1984) Angewandte Statistik. Springer, Berlin Heidelberg New YorkGoogle Scholar
- Scalia F (1976) The optic pathway of the frog: Nuclear organization and connections. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 386–406Google Scholar
- Schwippert WW, Ewert J-P (1994) Effect of neuropeptide-Y on tectal field potentials in the toad. Brain Res (in press)Google Scholar
- Sivilotti L, Nistri A (1986) Biphasic effects of glycine on synaptic responses of the frog optic tectum in vitro. Neurosci Lett 66: 25–30Google Scholar
- Steinbach JH, Stevens CF (1976) Neuromuscular transmission. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 33–92Google Scholar
- Stevens RJ (1974) A model of an early ‘off’ response in frog optic tectum. Brain Res 67: 51–63Google Scholar
- Székely G (1973) Anatomy and synaptology of the optic tectum. In: Jung R (ed) Central processing of visual information, Part B, Visual centers in the brain, (Handbook of sensory physiology, Volume VII/3), Springer, Berlin Heidelberg New York, pp 1–26Google Scholar
- Székely G, Lázár G (1976) Cellular and synaptic architecture of the optic tectum. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 407–434Google Scholar
- Vanegas H, Williams B, Essayag E (1984) Electrophysiological and behavioral aspects of the teleostean optic tectum. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York London, pp 121–161Google Scholar
- Wilczynski W, Northcutt RG (1977) Afferents to the optic tectum of the leopard frog: an HRP study. J Comp Neurol 173: 219–229Google Scholar