Journal of Comparative Physiology A

, Volume 176, Issue 2, pp 181–192 | Cite as

Pretecto-tectal influences

II. How retinal and pretectal inputs to the toad's superficial tectum interact: a study of electrically evoked field potentials
  • W. W. Schwippert
  • T. W. Beneke
  • J. -P. Ewert
Original Paper

Abstract

(1)From the dorsal surface of the toad (Bufo b. spinosus, B. marinus) optic tectum (OT), field potentials (FP) were recorded at 9 reference sites in response to electrical stimulation of the optic nerve (ON). The FP showed 4 main components, besides an initial deflection attributed to axonal potentials: two negative waves N1, N2 (attributed to postsynaptic excitatory processes) and two positive waves P2, P3 (attributed to postsynaptic inhibitory processes). The responses across the reference sites were rather similar in different individuals. (2) Electrical stimulation of an area in the ipsilateral pretectal lateral posterodorsal and posterior (Lpd/P) thalamic region evoked tectal FPs showing mainly a negative and a positive wave. Regarding wave amplitudes, the FPs displayed disproportionalities across the reference sites. (3) Electrical stimulation of the contralateral Lpd/P evoked mainly a positive wave in the tectal FP whose disproportionality corresponded roughly to the one obtained to ipsilateral Lpd/P stimulation. (4) The inital negative wave of the tectal FP in response to ON stimulation was nearly abolished, if Lpd/P stimulation preceded ON stimulation at a delay of 17–25 ms. (5) Since FPs showed adaptation to repetitive stimulation, various experiments were carried out to distinguish adaptation phenomena from effects of neuronal interactions between Lpd/P and OT. (6) The results provide evidence that ON- and Lpd/P-mediated inputs interact in superficial tectal layers, whereby pretectotectal input suppresses retinotectal excitatory information transfer. Input of Lpd/P to the contralateral superficial OT suggests postsynaptic inhibition. This study provides no information about pretectal inputs to deeper tectal layers, which anatomically are known to exist.

Key words

Optic tectum Evoked field potentials Pretectal/tectal interaction Toad 

Abbreviations

A-I

recording sites from the dorsal tectal surface

Dt

delay between Lpd/P and ON stimulation

EPSPIPSP

excitatory and inhibitory postsynaptic potentials, respectively

FP

field potential

L

latency of FP waves

ON

optic nerve

OT

optic tectum

Lpd/P

lateral posterodorsal and posterior pretectal thalamic region

Lpv

lateral posteroventral pretectal thalamic nucleus

N, P

negative and positive waves of FPs, respectively

PRE

presynaptic axonal input

TH

pretectal thalamic neurons

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buxbaum-Conradi H, Ewert J-P (1995) Pretecto-tectal influences I. What the toad's pretectum tells its tectum: an antidromic stimulation/recording study. J Comp Physiol A 176: 169–180Google Scholar
  2. Chung SH, Bliss TVP, Keating MJ (1974) The presynaptic organization of optic afferents in the amphibian tectum. Proc R Soc Lond Bs 187: 421–447Google Scholar
  3. Colmers WF, Lukowiak K, Pittman QJ (1987) Presynaptic action of neuropeptide Y in area CA1 of the rat hippocampal slice. J Physiol (Lond) 383: 285–299Google Scholar
  4. Debski EA, Constantine-Paton M (1990) Evoked pre and post synaptic activity in the optic tectum of the cannulated tadpole. J Comp Physiol A 167: 377–390Google Scholar
  5. Ewert J-P (1968) Der Einfluß von Zwischenhirndefekten auf die Visuomotorik im Beute- und Fluchtverhalten der Erdkröte (Bufo bufo L). Z Vergl Physiol 61: 41–70Google Scholar
  6. Ewert J-P (1971) Single unit response of the toad (Bufo americanus) caudal thalamus to visual objects. Z Vergl Physiol 74: 81–102Google Scholar
  7. Ewert J-P (1987) Neuroethology of releasing mechanisms: prey-catching in toads. Behav Brain Sci 10: 337–405Google Scholar
  8. Ewert J-P (1989) The release of visual behavior in toads: Stages of parallel/hierarchical information processing. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York, London, pp 39–120Google Scholar
  9. Ewert J-P, Wietersheim Av (1974a) Musterauswertung durch tectale und thalamus/praetectale Nervennetze im visuellen System der Kröte (Bufo bufo L). J Comp Physiol 92: 131–148Google Scholar
  10. Ewert J-P, Wietersheim Av (1974b) Der Einfluß von Thalamus/Praetectum-Defekten auf die Antwort von TectumNeuronen gegenüber bewegten visuellen Mustern bei der Kröte (Bufo bufo L). J Comp Physiol 92: 149–160Google Scholar
  11. Ewert J-P, Schwippert WW, Beneke TW (1990) Parallel distributed processing of configural moving objects in the toad's visual system. In: Eckmiller R, Hartmann G, Hauske G (eds) Parallel processing in neural systems and computers. North-Holland, Amsterdam New York Oxford Tokyo, pp 109–112Google Scholar
  12. Gernert M, Ewert J-P (1995) Neuropharmacological effects on visually evoked field potentials in the cone toads superficial optic tectum (submitted)Google Scholar
  13. Gruberg ER (1989) Nucleus isthmi and optic tectum in frogs. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 341–356Google Scholar
  14. Grüsser O-J, Grüsser-Cornehls U (1976) Neurophysiology of the anuran visual system. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 297–385Google Scholar
  15. Halgren E (1990) Human evoked potentials. In: Boulton AA, Baker GB, Vanderwolf CH (eds) Neuromethods 15, neurophysiological techniques, applications to neural systems. Humana Press, Clifton New Jersey, pp 147–275Google Scholar
  16. Humphrey DR, Schmidt EM (1990) Extracellular single unit recording method. In: Boulton AA, Baker GB, Vanderwolf CH (eds) Neuromethods 15, neurophysiological techniques, Applications to neural systems. Humana Press, Clifton, New Jersey, pp 1–64Google Scholar
  17. Ingle D (1973) Disinhibition of tectal neurons by pretectal lesions in the frog. Science 180: 422–424PubMedGoogle Scholar
  18. Jassik-Gerschenfeld D, Hardy O (1984) The avian optic tectum: Neurophysiology and behavioral correlations. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York London, pp 649–686Google Scholar
  19. Kozicz T, Lázár G (1994) The origin of tectal NPY immunopositive fibers in the frog. Brain Res 635: 345–348Google Scholar
  20. Kuljis RO, Karten HJ (1982) Laminar organization of peptide-like immunoreactivity in the anuran optic tectum. J Comp Neurol 212: 188–201Google Scholar
  21. Kuljis RO, Karten HJ (1983) Modifications in the laminar organization of peptide-like immunoreactivity in the anuran optic tectum following retinal deafferentation. J Comp Neurol 217: 239–251Google Scholar
  22. Lázár G (1984) Structure and connections of the frog optic tectum. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York, pp 185–210Google Scholar
  23. Lázár G (1989) Cellular architecture and connectivity of the frog's optic tectum and pretectum. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 175–199Google Scholar
  24. Leung L-WS (1990) FPs in the central nervous system-recording, analysis, and modeling. In: Boulton AA, Baker GB, Vanderwolf CH (eds) Neuromethods 15, neurophysiological techniques, applications to neural systems. Humana Press, Clifton New Jersey, pp 277–312Google Scholar
  25. Lewis D, Teyler TJ (1986) Long-term potentiation in the goldfish optic tectum. Brain Res 375: 246–250Google Scholar
  26. Matsumoto N (1989) Morphological and physiological studies of tectal and pretectal neurons in the frog. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 201–222Google Scholar
  27. Matsumoto N, Bando T (1980) Excitatory synaptic potentials and morphological classification of tectal neurons of the frog. Brain Res 192: 39–48Google Scholar
  28. Matsumoto N, Schwippert WW, Ewert J-P (1986) Intracellular activity of morphologically identified neurons of the grass frog's optic tectum in response to moving configurational visual stimuli. J Comp Physiol A 159: 721–739Google Scholar
  29. McCawley EL (1949) Certain actions of curare on the central nervous system. J Pharmacol 97: 129–139Google Scholar
  30. Merchenthaler I, Lázár G, Maderdrut JL (1989) Distribution of proenkephalin-derived peptides in the brain of Rana esculenta. J Comp Neurol 281: 23–39Google Scholar
  31. Neary T, Northcutt RG (1983) Nuclear organization of the bullfrog diencephalon. J Comp Neurol 213: 262–278Google Scholar
  32. Peretz B (1969) Vertical distribution of optic nerve fiber terminations in the frog optic tectum. Am J Physiol 217: 181–187Google Scholar
  33. Sachs L (1984) Angewandte Statistik. Springer, Berlin Heidelberg New YorkGoogle Scholar
  34. Scalia F (1976) The optic pathway of the frog: Nuclear organization and connections. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 386–406Google Scholar
  35. Schwippert WW, Ewert J-P (1994) Effect of neuropeptide-Y on tectal field potentials in the toad. Brain Res (in press)Google Scholar
  36. Sivilotti L, Nistri A (1986) Biphasic effects of glycine on synaptic responses of the frog optic tectum in vitro. Neurosci Lett 66: 25–30Google Scholar
  37. Steinbach JH, Stevens CF (1976) Neuromuscular transmission. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 33–92Google Scholar
  38. Stevens RJ (1974) A model of an early ‘off’ response in frog optic tectum. Brain Res 67: 51–63Google Scholar
  39. Székely G (1973) Anatomy and synaptology of the optic tectum. In: Jung R (ed) Central processing of visual information, Part B, Visual centers in the brain, (Handbook of sensory physiology, Volume VII/3), Springer, Berlin Heidelberg New York, pp 1–26Google Scholar
  40. Székely G, Lázár G (1976) Cellular and synaptic architecture of the optic tectum. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 407–434Google Scholar
  41. Vanegas H, Williams B, Essayag E (1984) Electrophysiological and behavioral aspects of the teleostean optic tectum. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York London, pp 121–161Google Scholar
  42. Wilczynski W, Northcutt RG (1977) Afferents to the optic tectum of the leopard frog: an HRP study. J Comp Neurol 173: 219–229Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • W. W. Schwippert
    • 1
  • T. W. Beneke
    • 1
  • J. -P. Ewert
    • 1
  1. 1.Abteilung Neurobiologie, Fachbereich Biologie/Chemie, Universität Kassel (GhK)KasselGermany

Personalised recommendations