Journal of Comparative Physiology A

, Volume 176, Issue 2, pp 169–180 | Cite as

Pretecto-tectal influences

I. What the toad's pretectum tells its tectum: an antidromic stimulation/recording study
  • H. Buxbaum-Conradi
  • J. -P. Ewert
Original Paper


Optic tectum and pretectum are two main structures for parallel processing of contralateral retinal inputs. Since it is known from anatomic studies that pretectum projects to ipsilateral tectum, the present investigation focuses on the physiological properties of this information transfer. (1) Extracellular single cell recordings from pretectal thalamic nuclei in cane toads Bufo marinus revealed different classes of neurons, TH1 to TH10, comparable to the ones described previously in B. americanus, except TH9. A further class TH11 responded specifically to the temporonasal direction of movement of a large object or textured surface. (2) Most neurons belonged to the classes TH3 and TH4, sensitive particularly to large moving objects and responsive to moving textured surfaces independent of the horizontal direction of movement. Nearly one third could be antidromically activated to electrical stimulation of the ipsilateral optic tectum, by the criterion of the collision test, that is ultimate proof of their pretectotectal projective character. (3) Among the remaining neurons, one tonically discharging TH1 cell fulfilled the collision test. (4) It is suggested that TH3 cells inform topographically corresponding structures of the tectal visual map about large moving objects and their extension perpendicular to the direction of movement, hence contributing to the discrimination between prey and non-prey. Class TH4 pretectotectal projection cells with inputs from the entire monocular or binocular visual field inform the tectum about large objects moving anywhere in the visual field and about a moving textured surrounding that fills the visual field. The latter would allow the tectum to discriminate object motion from self-induced motion.

Key words

Pretectum Neuronal classes Projections to the tectum Antidromic stimulation/recording technique Toad 



stripe in antiworm configuration, oriented perpendicular to the direction of movement


stripe in worm configuration, oriented parallel to the direction of movement




empirical and theoretical collision interval, respectively


excitatory receptive field


inhibitory receptive field

L, R

neuronal response latency and absolute refractory period, respectively

Lpd Lpv P

lateral posterodorsal, lateral posteroventral, and posterior pretectal thalamic nucleus, respectively


nasotemporal or temporonasal direction of stimulus movement in the visual field of the eye


optic tectum


classes of pretectal thalamic neurons


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arbib MA (1989) Visuomotor coordination: neural models and perceptual robotics. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination, amphibians, comparisons, models, and robots. Plenum Press, New York, pp 121–171Google Scholar
  2. Bieger D, Neuman RS (1984) Selective accumulation of hydroxytryptamines by frogs tectal neurons. Neuroscience 12: 1167–1177Google Scholar
  3. Birukow G (1938) Untersuchungen über den optischen Drehnystagmus und über die Sehschärfe des Grasfrosches (Rana temporaria L). Z Vergl Physiol 25: 92–142Google Scholar
  4. Brown WT, Ingle D (1973) Receptive field changes produced in frog thalamic units by lesions of the optic tectum. Brain Res 59: 405–409Google Scholar
  5. Brown WT, Marker WB (1977) Unit responses in the frog's caudal thalamus. Brain Behav Evol 14: 274–297Google Scholar
  6. Burghagen H, Ewert J-P (1983) Influence of the background for discriminating object motion from self-induced motion in toads Bufo bufo (L). J Comp Physiol 152: 241–249Google Scholar
  7. Cochran SL, Dieringer N, Precht W (1984) Basic optokinetic-ocular reflex patterns in the frog. J Neurosci 4: 43–57Google Scholar
  8. Ewert J-P (1968) Der Einfluß von Zwischenhirndefekten auf die Visuomotorik im Beute- und Fluchtverhalten der Erdkröte (Bufo bufo L). Z Vergl Physiol 61: 41–70Google Scholar
  9. Ewert J-P (1971) Single unit response of the toad (Bufo americanus) caudal thalamus to visual objects. Z Vergl Physiol 74: 81–102Google Scholar
  10. Ewert J-P (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York London, pp 247–416Google Scholar
  11. Ewert J-P (1987) Neuroethology of releasing mechanisms: preycatching in toads. Behav Brain Sci 10: 337–405Google Scholar
  12. Ewert J-P (1992) Neuroethology of an object features relating algorithm and its modification by learning. Rev Neurosci 3: 45–63Google Scholar
  13. Ewert J-P, Wietersheim Av (1974a) Musterauswertung durch tectale und thalamus/praetectale Nervennetze im visuellen System der Kröte (Bufo bufo L). J Comp Physiol 92: 131–148Google Scholar
  14. Ewert J-P, Wietersheim Av (1974b) Der Einfluß von Thalamus/Praetectum-Defekten auf die Antwort von Tectum-Neuronen gegenüber bewegten visuellen Mustern bei der Kröte (Bufo bufo L). J Comp Physiol 92: 149–160Google Scholar
  15. Ewert J-P, Hock FJ, Wietersheim Av (1974) Thalamus/Praetectum/Tectum: retinale Topographie und physiologische Interaktionen bei der Kröte (Bufo bufo L). J Comp Physiol 92: 343–356Google Scholar
  16. Ewert J-P, Burghagen H, Schürg-Pfeiffer E (1983) Neuroethological analysis of the innate releasing mechanism for prey-catching behavior in toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York London, pp 413–475Google Scholar
  17. Ewert J-P, Framing EM, Schürg-Pfeiffer E, Weerasuriya A (1990) Responses of medullary neurons to moving visual stimuli in the common toad: I. Characterization of medial reticular neurons by extracellular recording. J Comp Physiol A 167: 495–508Google Scholar
  18. Ewert J-P, Beneke TW, Schürg-Pfeiffer E, Schwippert WW, Weerasuriya A (1994) Sensorimotor processes that underlie feeding behavior in tetrapods. In: Bels VL, Chardon M, Vandevalle P (eds) Advances in comparative and environmental physiology, Vol. 18: Biomechanics of feeding in vertebrates. Springer, Berlin Heidelberg New York, pp 119–161Google Scholar
  19. Fite KV, Scalia F (1976) Central visual pathways in the frog. In: Fite KV (ed) The amphibian visual system: a multidisciplinary approach. Academic Press, New York San Francisco London, pp 87–118Google Scholar
  20. Frost BJ (1982) Mechanisms for discriminating object motion from self-induced motion in the pigeon. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. The MIT Press, Cambridge, pp 177–196Google Scholar
  21. Fuller JH, Schlag JD (1976) Determination of antidromic excitation by the collision test: problems of interpretation. Brain Res 112: 283–298Google Scholar
  22. Gaillard F, Galand G (1979) Diencephalic binocular wide field neurons in the frog. Exp Brain Res 34: 511–520Google Scholar
  23. Grüsser O-J, Grüsser-Cornehls U (1973) Neuronal mechanisms of visual movement perception and some psychological and behavioral correlates. In: Jung R (ed) Central processing of visual information: integrative functions and comparative data. (Handbook of Sensory Physiology, Vol. VII/3A). Springer, Berlin Heidelberg New York, pp 333–429Google Scholar
  24. Heiden an der U, Roth G (1989) Retina and optic tectum in amphibians: a mathematical model and simulation studies. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 243–267Google Scholar
  25. Holst E v, Mittelstaedt H (1950) Das Reafferenzprinzip. Naturwissenschaften 37: 464–476Google Scholar
  26. Ingle D (1973) Disinhibition of tectal neurons by pretectal lesions in the frog. Science 180: 422–424PubMedGoogle Scholar
  27. Ingle D (1976) Behavioral correlates of central visual function in anurans. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 435–451Google Scholar
  28. Ingle D (1977) Detection of stationary objects by frogs (Rana pipiens) after ablation of optic tectum. J Comp Physiol Psychol 91: 1359–1364Google Scholar
  29. Ingle D (1980) Some effects of pretectum lesions on the frog's detection of stationary objects. Behav Brain Res 1: 139–163Google Scholar
  30. Ingle D (1983a) Prey selection in frogs and toads: a neuroethological model. In: Satinoff E, Teitelbaum P (eds) Handbook of behavioral neurobiology, Vol. 6: Motivation. Plenum Press, New York, pp 235–261Google Scholar
  31. Ingle DJ (1983b) Brain mechanisms of visual localization by frogs and toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York London, pp 177–226Google Scholar
  32. Katte O, Hoffmann K-P (1980) Direction specific neurons in the pretectum of the frog (Rana esculenta). J Comp Physiol 140: 53–57Google Scholar
  33. Kozicz T, Lázár G (1994) The origin of tectal NPY immunopositive fibers in the frog. Brain Res 635: 345–348Google Scholar
  34. Lázár G (1971) The projection of the retinal quadrants on the optic centers in the frog. Acta Morphol Acad Sci Hung 19: 325–334Google Scholar
  35. Lázár G (1972) Role of accessory optic system in the optokinetic nystagmus of the frog. Brain Behav Evol 5: 443–460Google Scholar
  36. Lázár G (1989) Cellular architecture and connectivity of the frog's optic tectum and pretectum. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 175–199Google Scholar
  37. Lázár G, Alkony B, Tóth P (1983) Reinvestigation of the role of the accessory optic system and the pretectum in the horizontal head nystagmus of the frog. Lesion experiments. Acta Biol Acad Sci Hung 34: 385–393Google Scholar
  38. Lettvin JY, Maturana HR, McCulloch WS, Pitts WH (1959) What the frog's eye tells the frog's brain. Proc Inst Radio Engin 47: 1940–1951Google Scholar
  39. Lipski J (1981) Antidromic activation of neurons as an analytic tool in the study of the central nervous system. J Neurosci Methods 4: 1–32Google Scholar
  40. Manteuffel G (1984) Electrophysiology and anatomy of direction-specific pretectal units in Salamandra salamandra. Exp Brain Res 54: 415–425Google Scholar
  41. Manteuffel G (1985) Monocular and binocular optic inputs to salamander pretectal neurons: intracellular recording and HRP labelling study. Brain Behav Evol 27: 1–10Google Scholar
  42. Manteuffel G (1987) Binocular afferents to salamander pretectum mediate rotation sensitivity of cells selective for visual background motions. Brain Res 422: 381–383Google Scholar
  43. Manteuffel G (1989) Compensation of visual background motion in salamanders. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 311–340Google Scholar
  44. Matsumoto N (1989) Morphological and physiological studies of tectal and pretectal neurons in the frog. In: Ewert J-P, Arbib MA (eds) Visuomotor coordination: amphibians, comparisons, models, and robots. Plenum Press, New York London, pp 201–222Google Scholar
  45. Merchenthaler I, Lázár G, Maderdrut, JL (1989) Distribution of proenkephalin-derived peptides in the brain of Rana esculenta. J Comp Neurol 281: 23–39Google Scholar
  46. Montgomery N, Fite KV, Taylor M, Bengston L (1982) Neural correlates of optokinetic nystagmus in the mesencephalon of Rana pipiens: functional analysis. Brain Behav Evol 21:137–150Google Scholar
  47. Montgomery NM, Fite KV, Grigonis AM (1985) The pretectal nucleus lentiformis mesencephali of Rana pipiens. J Comp Neurol 234: 264–275Google Scholar
  48. Neary T, Northcutt RG (1983) Nuclear organization of the bullfrog diencephalon. J Comp Neurol 213: 262–278Google Scholar
  49. Rehn B (1977) Cerebrale Repräsentation des Fluchtverhaltens der Erdkröte (Bufo bufo L). PhD Thesis, Technical Univ DarmstadtGoogle Scholar
  50. Satou M, Matsushima T, Takeuchi H, Ueda K (1985) Tongue-muscle-controlling motoneurons in the Japanese toad: topography, morphology and neuronal pathways from the ‘snapping-evoking area’ in the optic tectum. J Comp Physiol A 157: 717–737Google Scholar
  51. Schürg-Pfeiffer E, Spreckelsen C, Ewert J-P (1994) Temporal discharge patterns of tectal and medullary neurons chronically recorded during snapping toward prey in toads Bufo bufo spinosus. J Comp Physiol A 173: 363–376Google Scholar
  52. Schwippert WW, Beneke TW, Ewert J-P (1995) Pretecto-tectal influences II. How retinal and pretectal inputs to the toad's superficial tectum interact: a study of electrically evoked field potentials. J Comp Physiol A 176: 181–192Google Scholar
  53. Sparks DL (1988) Neural cartography: sensory and motor maps in the superior colliculus. In: Finger TE (ed) Neural cartography: how does the CNS use sensory maps? Karger, Basel, pp 49–55Google Scholar
  54. Székely G, Lázár G (1976) Cellular and synaptic architecture of the optic tectum. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 407–434Google Scholar
  55. Tóth P, Csank G, Lázár G (1985) Morphology of the cells of origin of descending pathways to the spinal cord in Rana esculenta. A tracing study using cobalt-lysine complex. J Hirnforsch 26: 365–383Google Scholar
  56. sai H-J (1990) Responses of toad's tectal neurons to in-phase and anti-phase movements of object and textured background. J Comp Physiol A 167: 857–863Google Scholar
  57. Tsai H-J, Ewert J-P (1988) Influence of stationary and moving textured backgrounds on the response of visual neurons in toads (Bufo bufo L). Brain Behav Evol 32: 27–38Google Scholar
  58. Weerasuriya A, Ewert J-P (1981) Prey-selective neurons in the toad's optic tectum and sensorimotor interfacing: HRP studies and recording experiments. J Comp Physiol 144: 429–434Google Scholar
  59. Weerasuriya A, Ewert J-P (1983) Afferents of some dorsal retino-recipient areas of the brain of Bufo bufo. Soc Neurosci Abstr 9: 536Google Scholar
  60. Wietersheim A v, Ewert J-P (1978) Neurons of the toad's (Bufo bufo L) visual system sensitive to moving configurational stimuli: a statistical analysis. J Comp Physiol 126: 35–42Google Scholar
  61. Wilczynski W, Northcutt RG (1977) Afferents to the optic tectum of the leopard frog: an HRP study. J Comp Neurol 173: 219–229Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • H. Buxbaum-Conradi
    • 1
  • J. -P. Ewert
    • 1
  1. 1.Abteilung Neurobiologie, Fachbereich Biologie/Chemie, Universität Kassel (GhK)KasselGermany

Personalised recommendations