Polar Biology

, Volume 13, Issue 3, pp 201–213

The influence of copepod and krill grazing on the species composition of phytoplankton communities from the Scotia Weddell sea

An experimental approach
  • Edna Granĺi
  • Wilhelm Granéli
  • Mohammed Mozzam Rabbani
  • Niels Daugbjerg
  • George Fransz
  • Janine Cuzin Roudy
  • Viviana A. Alder
Article

Abstract

The influence of copepods (mainly Oithona sim-ilis) and krill (Euphausia superba) grazing on the species composition of plankton communities in ship board con tainers was investigated during the spring and post spring period in the Scotia Weddell Sea in the Antarctic ocean. Numbers of grazers were experimentally manipulated in containers with natural phytoplankton assemblages. With ratural levels of copepods but no krill a high (700–950 μg C·l1, ca 30 μg chl a·.l1) phytoplankton biomass developed. In these cultures large diatoms, e.g. Corethron criophilum and chains of Thalassiosira sp., made up 80% of total phytoplankton cell carbon at the end of the experiment. In cultures with elevated numbers of copepods (5X or 10X the natural level) phytoplankton biomass was somewhat reduced (ca 23 μg chl a · l1) compared to cultures with natural copepod abundance, but still high. Phytoplankton species composition was on the other hand greatly influenced. Instead of large diatoms these cultures were dominated by Phaeocystis pouchetii (70%) together with small Nitszchia sp. and Chaetoceros neogracile (20%). In containers with krill (both juveniles and adults), but without elevated numbers of copepods, phytoplankton biomass rapidly approached zero. With 10X the in situ level of copepods, krill first preyed on these before Corethron criophilum and Thalassiosira sp. were grazed. When krill were removed a plankton community dominated by flagellates (60–90%), e.g. Pyramimonas sp. and a Cryptophycean species, grazed by an unidentified droplet-shaped heterothrophic flagellate, developed. These flagellates were the same as those which dominated the plankton community in the Weddell Sea after the ‘spring bloom’. A similar succession was observed in situ when a krill swarm grazed down a phytoplankton ‘bloom’ in a few hours. Our experiments show that copepods cannot control phytoplankton biomass in shipboard cultures even at artificially elevated numbers. Krill at concentrations similar to those in natural swarms have a great impact on both phytoplankton biomass and species composition in shipboard cultures. Both copepods and krill may have an impact on phytoplankton species composition and biomass in situ since the rates of phytoplankton cell division were probably artificially increased in shipboard cultures compared to natural conditions, where lower growth rates make phytoplankton more vulnerable to grazing. A similarity between phytoplankton successions in containers and in situ, especially with respect to krill grazing, supports the conclusion that grazing may structure phytoplankton communities in the Scotia-Weddell Sea.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anon (1989) EPOS LEG 2 datareport, Hydrography, Part 1. NIOZ, Den Burg Texel, The NetherlandsGoogle Scholar
  2. Baar HJW de, Buma AGJ, Jacques G, Nolting RF, Treguer PJ (1989) Trace metals — Iron and manganese effects on phytoplankton growth. In Hempel I; Schalk PH, Smetacek V (eds) The ex pedition Antarktis VII/3 (EPOS Leg 2) of RV “Polarstern” in 1988/89. — Berichte zur Polarforschung, Alfred-Wegener-Institut für Polar und Meeresforschung, Bremerhaven, 65:34–43Google Scholar
  3. Baar HJW de, Buma AGJ, Nolting RF, Cadée GC, Jacques G, Treguer PJ (1990) On iron limitation of the Southern Ocean: experimental observations in the Weddell and Scotia Seas. Mar Biol Prog Ser 65:105–122Google Scholar
  4. Bennekom J van, Estrada M, Goeyens L, Magas B, Masson A, Morvan J, Treguer PJ, Svansson A, Veth C (1989) Distribution of nutrients m surface, subsurface and deep layers. In: Hempel I, Schalk PH, Smetacek V (eds) The expedition Antarktis VII/3 (EPOS Leg 2) of RV “Polarstern” in 1988/89. — Berichte zur Polarforschung, Alfred-Wegener-Institut für Polar und- Meeres- forschung, Bremerhaven, 65:47–55Google Scholar
  5. Bergquist AM, Carpenter SR (1986) Limnetic herbivory: effects on phytoplankton populations and primary production. Ecology 67:1351–1360Google Scholar
  6. Bedungen B von (1986) Phytoplankton growth and krill grazing during spring in the Bransfield Strait, Antarctica — implications from sediment trap collections. Polar Biol 6:153–160Google Scholar
  7. Bedungen B von, Smetacek V, Tilzer MM, Zeitzschel B (1986) Primary production and sedimentation during spring in the Antarctic Peninsula region. Deep Sea Res 33:177–194Google Scholar
  8. Boyd CM, Heyraud M, Boyd CN (1984) Feeding of the Antarctic Krill, Euphausia superba. J Crust Biol 4:123–141Google Scholar
  9. Buma A, Estrada M, Larsen J, Riebsell U, Schloss I, Thomsen HA (1989) Unicellular organisms studied alive using photographic and video techniques. In: Hempel I, Schalk PH, Smetacek V (eds) The expedition Antarktis VII/3 (EPOS Leg 2) of RV “Polarstern” in 1988/89 — Berichte zur Polarforschung, Alfred-Wegener- Institut für Polar- und Meeresforschung, Bremerhaven, 65:102–110Google Scholar
  10. Buma AGJ, de Baar HJW, Nolting RF, van Bennekom J (1991) Metal enrichment experiments in the Weddell-Scotia Seas: Effects of iron and manganese on various plankton communities. Limnol Oceanogr 36:1865–1878Google Scholar
  11. Chavez FP, Buck KR, Coale KH, Martin JH, DiTullio GR, Welsc Hmeyer NA, Jacobson AC, Barber RT (1991) Growth rates, grazing, sinking, and iron limitation of equatorial Pacific phytoplankton. Limnol Oceanogr 36:1816–1833Google Scholar
  12. Chisholm SW, Morel FMM (eds) (1991) What controls phyto- plankton production in nutrient rich areas of the open sea? Limnol Oceanogr 36:474 ppGoogle Scholar
  13. Cullen JJ (1991) Hypotheses to explain high-nutrient conditions in the open sea. Limnol Oceanogr 36:1578–1599Google Scholar
  14. Cuzin-Roudy J, Schalk PH (1989) Macrozooplankton — Biomass, development and activity. In: Hempel I, Schalk PH, Smetacek V (eds) The expedition Antarktis VII/3 (EPOS Leg 2) of RV “Polarstern” in 1988/89. — Berichte zur Polarforschung, Alfred Wegener Institut für Polar- und Meeresforschung, Bremerhaven, 65:146–159Google Scholar
  15. Edler L (ed) (1979) Recommendations on methods for marine biological studies in the Baltic sea. The Baltic Marine Biologists Publication 5:38 ppGoogle Scholar
  16. El-Sayed S (1984) Productivity of the Antarctic waters — a re appraisal. In Holm-Hansen O, Bolis L, Gilles R (eds), Marine phytoplankton and productivity, Lecture notes on coastal and estuarine studies 8:19–34Google Scholar
  17. Eppley RW, Petersen BJ (1979) Paniculate organic matter flux and planktonic new production in the deep ocean. Nature 282:677–680Google Scholar
  18. Fransz HG (1988) Vernal abundance, structure and development of epipelagic copepod populations in the eastern Weddell Sea. Polar Biol 9:107–114Google Scholar
  19. Fransz HG, Gieskes WWC (1984) The unbalance of phytoplankton and copepods in the North Sea. Rapp P-v Réun Cons Int Explor Mer 183:218–225Google Scholar
  20. Fransz HG, Gonzales SR, Mizdalski E, Schiel S (1989) Mesozoo- plankton — Distribution and development of copepods. In: Hempel I, Schalk PH, Smetacek V (eds) The expedition Antarktis VII/3 (EPOS Leg 2) of RV “Polarstern” in 1988/89. — Berichte zur Polarforschung, Alfred-Wegener-Institut für Polar- und Meeres- forschung, Bremerhaven, 65:135–145Google Scholar
  21. Frost BW (1991) The role of grazing in nutrient-rich areas of the open sea. Limnol Oceanogr 36:1616–1630Google Scholar
  22. Gilbert PM, Biggs DC, McCarthy JJ (1982) Utilization of ammonium and nitrate during austral summer in the Scotia Sea. Deep-Sea Res 29:837–850Google Scholar
  23. Granéli E, Carlsson P, Olsson P, Sundström B, Granéli W, Lindahl O (1989) From anoxia to fish poisoning: The last ten years of phytoplankton blooms in Swedish Marine waters. In: Cosper EM, Bricelj VM, Carpenter EJ (eds) Novel Phytoplankton Blooms Springer, New York, pp 407–427Google Scholar
  24. Granéli E, Olsson P, Carlsson P, Granéli W, Nylander C (1993) Weak “top-down” control of dinoflagellate growth in the coastal Skagerrak. J Plankton Res (in press)Google Scholar
  25. Grossnickle NE (1982) Feeding habits of Mysis relicta — an overview. Hydrobiologia 93:101–107Google Scholar
  26. Hayes PK, Whitaker TM, Fogg GE (1984) The distribution and nutrient status of phytoplankton in the southern ocean between 20° and 70° W. Polar Biol 3:153–165Google Scholar
  27. Helbling EW, Villafane V, Holm-Hansen O (1991) Effect of iron on productivity and size distribution of Antarctic phytoplankton. Limnol Oceanogr 36:1879–1885Google Scholar
  28. Hempel I, Schalk PH, Smetacek V (eds) (1989) The expedition Antarktis VII/3 (EPOS Leg 2) of RV “Polarstern” in 1988/89. Berichte zur Polarforschung, Alfred-Wegener-Institut für Polar und Meeresforschung, Bremerhaven, 65:199 ppGoogle Scholar
  29. Holm-Hansen O, Huntley M (1984) Feeding requirements of krill in relation to food sources. J Crust Biol 4:156–173Google Scholar
  30. Holm-Hansen O, El-Sayed SZ, Franceschini GA, Cuhel RL (1977) Primary production and the factors controlling phytoplankton growth in the Southern Ocean. In: Llano GA (ed) Adaptations within antartic ecosystems. Smithsonian Institution, Washington D.C., pp 11–50Google Scholar
  31. Jacques G, Panouse M (1989) Phytoplankton, protozooplankton and bacterioplankton. In: Hempel I, Schalk PH, Smetacek V (eds) The expedition Antarktis VII/3 (EPOS Leg 2) of RV “Polarstern” in 1988/89. — Berichte zur Polarforschung, Alfred-Wegener- Institut für Polar- und Meeresforschung, Bremerhaven 65:61–67Google Scholar
  32. Jacques G, Panouse M (1991) Biomass and composition of size fractionated phytoplankton in the Weddell Scotia Confluence area. Polar Biol 11:315–328Google Scholar
  33. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanzen (BPP), 167:191–197Google Scholar
  34. Johnson MA, MacAulay MC, Biggs DC (1984) Respiration and excretion within a mass aggregation of Euphausia superba: implications for krill distribution. J Crust Biol 4:174–184Google Scholar
  35. Kopczynska EE (1992) Dominance of microflagellates over diatoms in the Antarctic areas of deep vertical mixing and krill concentrations. J Plankt Res 14:1031–1054Google Scholar
  36. Lancelot C, Mathot S (1989) Phytoplankton: Photosynthesis, growth and respiration. Ber Polarforsch 65: 78–86. In: Hempel I, Schalk PH, Smetacek V (eds) The expedition Antarktis VII/3 (EPOS Leg 2) of RV “Polarstern” in 1988/89. — Berichte zur Polarforschung, Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven, 65:20–24Google Scholar
  37. Lancelot C, Billen G, Soournia A. Weisse T, Colijn F, Veldhuis MJW, Davies A, Wassman P (1987) Phaeocystis blooms and nutrient enrichment in the continental coastal zones of the North Sea Ambio 16:38–46Google Scholar
  38. Laws RM (1985) The ecology of the southern ocean. Am Sci 26–40Google Scholar
  39. Magas B, Svansson A (1989) Optics. In: Hempel I, Schalk PH, Smetacek V (eds) The expedition Antarktis VII/3 (EPOS Leg 2) of RV “Polarstern” in 1988/89. — Berichte zur Polarforschung, Alfred-Wegener-Institut für Polar und Meeresforschung, Bremrhaven, 65:20–24Google Scholar
  40. Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growl h in the North-East Pacific subarctic. Nature 331:341–343Google Scholar
  41. Martin JH, Gordon RM (1988) Northeast Pacific iron distributions in relation to phytoplankton productivity. Deep Sea Res 35:177–196Google Scholar
  42. Martin JH, Gordon RM, Fitzwater SE, Broenkow WW (1989) VERTEX: phytoplankton/iron studies in the Gulf of Alaska. Deep Sea Res 35:649–680Google Scholar
  43. Martin JH, Gordon RM, Fitzwater SE (1991) The case of iron. Limnol Oceanogr 36:1793–1802Google Scholar
  44. Meyer MA, El-Sayed SZ (1983) Grazing of Euphausia superba Dana on natural phytoplankton populations. Polar Biol 1:193–197Google Scholar
  45. Miller DGM, Hampton I, Henry J, Abrams RW, Cooper J (1985) The relationship between krill food requirements and the phytoplankton production in a sector of the southern Indian Ocean. In: Siegfried WR, Condy PR, Laws RM eds, Antarctic nutrient cycles and food webs, Springer-Verlag, Berlin, pp 362–371Google Scholar
  46. Mitchell BG, Brody EA, Holm-Hansen O, McClain C, Bishop J (1991) Light limitation of phytoplankton biomass and macronutrisnt utilization in the Southern Ocean. Limnol Oceanogr 36:1652–1677Google Scholar
  47. Nelson DM, Smith WO Jr, Gordon LI, Huber BA (1987) Spring distributions of density, nutrients, and phytoplankton biomass in the ice-edge zone of the Weddell Scotia Sea. J Geophys Res 92:7181–7190Google Scholar
  48. Olsson P, Granéli E, Carlsson P, Abreu P (1992) Structuring of a postspring phytoplankton community by manipulation of trophic interactions. J Exp Mar Biol Ecol 158:249–266Google Scholar
  49. Porter KG (1976) Enhancement of algal growth and productivity by grazing Zooplankton. Science 192:1332–1334Google Scholar
  50. Price HJ, Boyd KR, Boyd CM (1988) Omnivorous feeding behavior of the Antarctic krill Euphausia superba. Mar Biol 97:67–77Google Scholar
  51. Priddle J, Hawes I, Ellis-Evans JC, Smith TJ (1986) Antarctic aquatic ecosystems as habitats for phytoplankton. Biol Rev 61:199–238Google Scholar
  52. Quetin LB, Ross RM (1985) Feeding by antarctic krill, Euphausia superba: does size matter? In: Siegfried WR, Condy PR, Laws RM eds, Antarctic nutrient cycles and food webs, Springer, Berlin Heidelberg, New York, pp 372–377Google Scholar
  53. Sakshaug E (1989) The physiological ecology of polar phytolankton. In: Rey L, Alexander V (eds): Proceedings of the sixth conference of the Comité Arctique International, 13–15 May 1985 — EJ Brill, Leiden, 61–89Google Scholar
  54. Sakshaug E, Holm-Hansen O (1984) Factors governing pelagic production in polar oceans. In: Holm Hansen O, Bolis L, Gilles R (eds). Marine phytoplankton and productivity, Lecture notes on coastal and estuarine studies, 8:1–18Google Scholar
  55. Sakshaug E, Skjoldal HR (1989) Life at the ice edge. Ambio 18:60–67Google Scholar
  56. Schnack SB (1985) Feeding by Euphausia superba and copepod species in response to varying concentrations of phytoplankton. In: Siegfried WR, Condy PR, Laws RM (eds), Antarctic nutrient cycles and food webs, Springer, Berlin Heidelberg, New York, pp 311–323Google Scholar
  57. Schulenberger E, Wormuth JH, Loeb VJ (1984) A large swarm of Euphausia superba: overview of patch structure and composition. J Crust Biol 4:75–95Google Scholar
  58. Smetacek V, Veth C (1989) Introduction. In: Hempel I, Schalk PH, Smetacek V (eds) The expedition Antarktis VII/3 (EPOS Leg 2) of RV “Polarstern” in 1988/89. — Berichte zur Polarforschung, Alfred-Wegener Institut für Polar- und Meeresforschung, Bremerhaven, 65:1–7Google Scholar
  59. Sommer U (1986) Nitrate- and silicate-competition among antarctic phytoplankton. Mar Biol 91:345–351Google Scholar
  60. Sommer U (1988a) The species composition of Antarctic phytoplankton interpreted in terms of Tilman's competition theory. Oecologia 77:464–467Google Scholar
  61. Sommer U (1988b) Phytoplankton succession in microcosm experiments under simultaneous grazing pressure and resource limitation. Limnol Oceanogr 33:1037–1054Google Scholar
  62. Sterner RW (1986) Herbivores direct and indirect effects on algal populations. Science 231:605–607Google Scholar
  63. Teixeira C, Brandini FP, Aragao EA, Sarti CC (1986) Primary production and phytoplankton standing stock along the Bransfield Strait (Antarctica). An Acad Brasil Cienc 58 [Suppl]:85–97Google Scholar
  64. Tilzer MM, Bedungen B von, Smetacek V (1985) Light-dependence of phytoplankton photosynthesis in the Antarctic Ocean: implications for regulating productivity. In: Siegfried WR, Condy PR, Laws RM (eds), Antarctic nutrient cycles and food webs, Springer-Verlag, Berlin, pp 60–69Google Scholar
  65. Tréguer PJ, Jacques G (1986) The Antarctic Ocean. La Recherche 178:746–755 (In French)Google Scholar
  66. Veldhuis MJW, Admiraal W (1987) Influence of phosphate depletion on the growth and colony formation of Phaeocystis pouchetii. Mar Biol 95:47–54Google Scholar
  67. Verity PG, Smayda TJ (1989) Nutritional value of Phaeocystis pouchetii (Prymnesiophyceae) and other phytoplankton for Acartia spp. (Copepoda): ingestion, egg production, and growth of nauplii. Mar Biol 100:161–171Google Scholar
  68. Veth C (1991) The evolution of the upper water layer in the marginal ice zone, austral spring 1988, Scotia Weddell Sea. J Mar Syst 2:451–464Google Scholar
  69. Weber LH, El-Sayed SZ (1987) Contributions of the net, nano- and picoplankton to the phytoplankton standing crop and primary productivity in the Southern Ocean. J Plankton Res 9:973–994Google Scholar
  70. Wilkerson FP, Dugdale RC (1987) The use of large shipboard barrels and drifters to study the effects of coastal upwelling on phytoplankton dynamics. Limnol Oceanogr 32:368–382Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Edna Granĺi
    • 1
  • Wilhelm Granéli
    • 2
  • Mohammed Mozzam Rabbani
    • 3
  • Niels Daugbjerg
    • 4
  • George Fransz
    • 5
  • Janine Cuzin Roudy
    • 6
  • Viviana A. Alder
    • 7
  1. 1.Department of Marine EcologyUniversity of LundSweden
  2. 2.Department of LimnológyLundSweden
  3. 3.National Institute of OceanographyKarachiPakistan
  4. 4.Institute for SporeplanterUniversity of CopenhagenCopenhagen KDenmark
  5. 5.NIOZ-Netherland Institute Sea ResearchDen BurgThe Netherlands
  6. 6.Station Zoologique, C.E.R.O.V.Villefranche sur MerFrance
  7. 7.Institute Antartico ArgentineBuenos AiresArgentina

Personalised recommendations